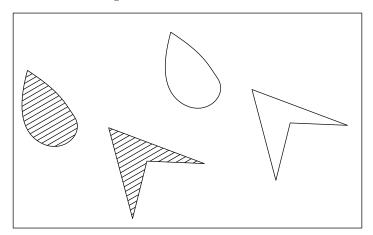


Seconde/Les vecteurs

1. Introduction à la translation :

Exercice 2761

On considère la figure ci-dessous :



1. La figure ovoïde hachurée a été obtenue par une translation de la figure ovoïde blanc.

Représenter un vecteur caractérisant cette translation.

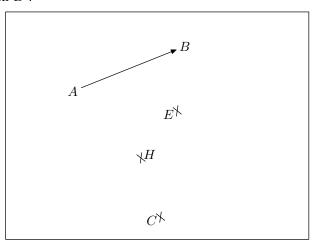
2. Le polygone hachuré a été obtenu par une translation du polygone blanc.

Tracer trois représentants de cette translation.

3. Faire une conjecture sur ces deux translations.

Exercice 2764

On considère la translation T du plan qui transforme le point A en B:

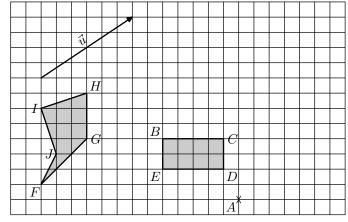


Les tracés doivent être effectués à la règle non-graduée et le compas:

- 1. Placer le point D, image du point C par la translation qui transforme A en B.
- 2. Placer le point F, image du point E par la translation du vecteur AB.
- 3. Placer le point G tel que G a pour image le point H par la translation de vecteur \overrightarrow{AB} .

Exercice 2763

Dans le quadrillage ci-dessous, on considère la translation Tde vecteur u:



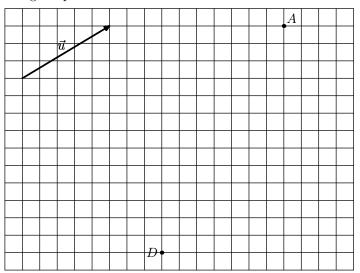
- 1. Tracer l'image A' du point A par la translation de vec-
- 2. Effectuer le tracé de l'image du rectangle BCDE par la translation T.
- Tracer le translaté du polygone FGHIJ par le vecteur

Exercice 918

- 1. Tracer un triangle ABC rectangle en B.
- 2. Placer le point T tel que : $\overrightarrow{AB} = \overrightarrow{CT}$. Quelle est la nature du quadrilatère ABTC?
- 3. Placer le point M tel que : $\overrightarrow{BC} = \overrightarrow{MT}$. Justifier que le quadrilatère BCTM est un rectangle.

Dans le quadrillage ci-dessous :

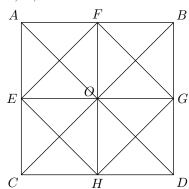
- 1. Tracer un représentant du vecteur \overrightarrow{u} ayant pour extré-
- Tracer un représentant du vecteur $\stackrel{\rightarrow}{u}$ ayant pour origine le point D.
- Tracer un vecteur \overrightarrow{v} de même longeur que \overrightarrow{u} mais différent de \overrightarrow{u} .
- Tracer un vecteur \overrightarrow{w} de même direction, de même sens que \overrightarrow{u} , mais différents de \overrightarrow{u} .
- 5. Tracer un vecteur \overrightarrow{s} de même direction et de même longeur que \overrightarrow{u} mais différent de \overrightarrow{u} .



Exercice 928

ABCD est un carré de centre O.

Les points E, F, G, H sont les milieux des côtés du carré.



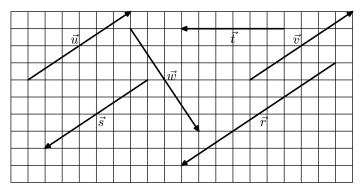
- 1. Quel est l'image du point B par la rotation de centre O, d'angle 90^o dans le sens inverse des aiguilles d'une montre.
- 2. Quel est l'image du point E par la translation de vecteur
- 3. Compléter les pointillés afin de vérifier les égalités :

a.
$$\overrightarrow{AO} = \overrightarrow{O \dots} = \overrightarrow{\dots G}$$
 b. $\overrightarrow{FC} = \overrightarrow{\dots H}$

b.
$$\overrightarrow{FC} = \overrightarrow{\dots H}$$

c.
$$\overrightarrow{DG} = \overrightarrow{O \dots} = \overrightarrow{\dots} \overrightarrow{A}$$

Exercice 5987



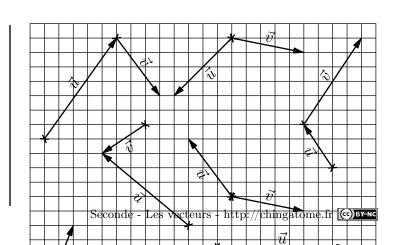
Compléter le tableau ci-dessous :

Par rapport à $\stackrel{\rightarrow}{u}$	Direction	Sens	Longueur
\overrightarrow{v}			
\overrightarrow{w}			
\overrightarrow{r}			
\xrightarrow{S}			
\overrightarrow{t}			

3. Somme de vecteurs :

Exercice 925

Déterminer dans les 8 cas ci-dessous la somme des deux vecteurs:

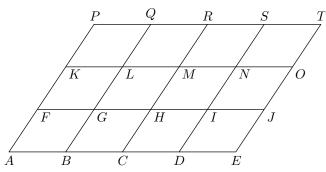


2. Placer le point J tel que : $\overrightarrow{FJ} = \overrightarrow{EF}$

3. Placer le point K tel que : $\overrightarrow{FK} = \overrightarrow{EH} + \overrightarrow{EF}$

Exercice 2784

On considère le dessin ci-dessous :



Recopier et compléter convenablement les pointillés :

a.
$$\overrightarrow{BM} + \overrightarrow{KB} = \overrightarrow{K} \dots$$

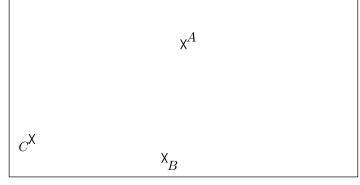
b.
$$\overrightarrow{MG} + \overrightarrow{CD} + \overrightarrow{IQ} = \overrightarrow{\dots P}$$

$$\overrightarrow{UM} + \overrightarrow{\dots} = \overrightarrow{0}$$

d.
$$\overrightarrow{FL} + \overrightarrow{\ldots I} = \overrightarrow{FN}$$

Exercice 933

 $A,\,B$ et C sont trois points du plan. Reproduiser une figure analogue à celle ci-dessous et compléter-la avec les questions suivantes :

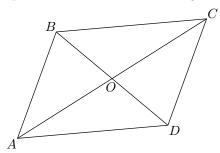


- 1. Construire le point M image de A par la translation de vecteur \overrightarrow{BC} .
- 2. Donner un vecteur égal au vecteur \overrightarrow{MA} .
- 3. Construire K tel que : $\overrightarrow{CA} + \overrightarrow{CB} = \overrightarrow{CK}$
- 4. Justifier l'égalité : $\overrightarrow{CB} = \overrightarrow{AK}$.
- 5. Démontrer que : $\overrightarrow{MA} = \overrightarrow{AK}$. Que peut-on dire pour le point A?

4. Vecteurs opposés :

Exercice 6996

On considère le parallélogramme ABCD représenté cidessous et le point O intersection de ses diagonales.

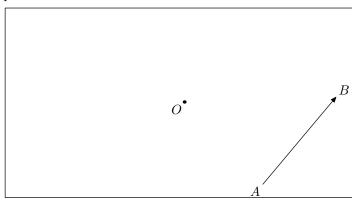


Citer un couple de vecteurs opposés à l'aide des points de cette figure.

Exercice 6997

Dans le plan, on considère un point O et un vecteur \overrightarrow{AB} re-

présentés ci-dessous :



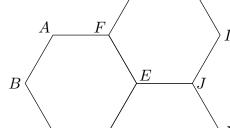
- 1. A l'aide du compas et de la règle non-graduée, placer les points A' et B' symétriques des points A et B par rapport au point O.
- 2. Que peut-on dire des points \overrightarrow{AB} et $\overrightarrow{A'B'}$?

5. Relation de Chasles et manipulations algébriques :

Exercice 924

La figure ci-contre est constituée d'hexagones réguliers tous identiques :

Remplissez les pointillés en dé- B taillant , si possible, vos calculs :



G

H

Seconde - Les vecteurs - http://chingatome.fr

a.
$$\overrightarrow{AC} + \overrightarrow{CE} = \overrightarrow{\ldots E}$$

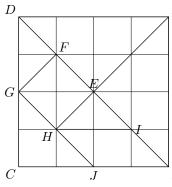
b. $\overrightarrow{DE} + \overrightarrow{DJ} = \overrightarrow{D} \dots$

$$\overrightarrow{FG} + \overrightarrow{AD} = \overrightarrow{F} \dots$$

 $\overrightarrow{BE} + \overrightarrow{KE} = \overrightarrow{D} \dots$

e.
$$\overrightarrow{CD} + \overrightarrow{\dots} = \overrightarrow{0}$$

Exercice 932



Recopier l'énoncé sur votre copie et compléter les poin-

1.
$$\overrightarrow{EI} + \overrightarrow{FG} = \overrightarrow{E \dots}$$

$$2. \quad \overrightarrow{JG} + \overrightarrow{JB} = \overrightarrow{J \dots}$$

3.
$$\overrightarrow{GF} + \overrightarrow{GH} + \overrightarrow{EI} = \dots$$

4.
$$\overrightarrow{CH} + \overrightarrow{CJ} + \overrightarrow{BH} = \dots$$

Exercice 496

Soit ABCD un parallélogramme. On note :

- I le milieu du segment [AB];
- J le milieu du segment [DC].

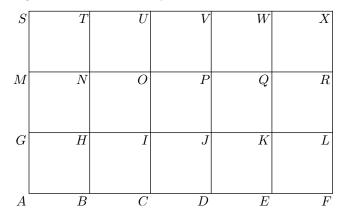
Exercice 6545

Déterminer dans chaque cas un représentant du vecteur ré-

a.
$$\overrightarrow{AC} + \overrightarrow{JA}$$
 b.

b. $\overrightarrow{AI} + \overrightarrow{AD}$ c. $\overrightarrow{AB} + \overrightarrow{IJ} - \overrightarrow{DJ}$

La figure ci-dessous est composée de 15 carrés.



Recopier les égalité vectorielles ci-dessous et compléter correctement les pointillés par le point manquant :

a.
$$\overrightarrow{NJ} + \overrightarrow{BO} = \overrightarrow{N} \dots$$

a.
$$\overrightarrow{NJ} + \overrightarrow{BO} = \overrightarrow{N} \dots$$
 b. $\overrightarrow{JW} + \overrightarrow{GU} + \overrightarrow{UB} = \overrightarrow{\dots O}$

$$\overrightarrow{TI} + \overrightarrow{\ldots J} = \overrightarrow{TQ}$$

c.
$$\overrightarrow{TI} + \overrightarrow{\dots J} = \overrightarrow{TQ}$$
 d. $\overrightarrow{PH} + \overrightarrow{OD} + \overrightarrow{C \dots} = \overrightarrow{VK}$

6. Coordonnées de vecteurs :

Exercice 2057

i

1

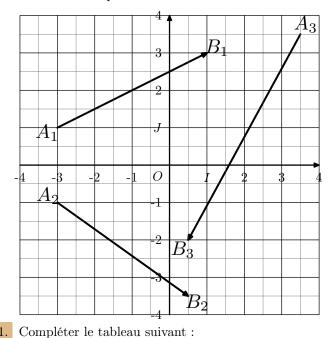
2

3

 $(x_{A_i};y_{A_i})$

vecteur?

On considère, dans le repère (O; I; J) orthonormé et les trois flèches ci-dessous représentés ci-dessous :



 $(x_{B_i};y_{B_i})$

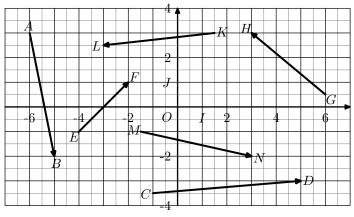
a. Que représentent les nombres 4 et 2 pour le premier

 $x_{B_i} - x_{A_i}$

 $y_{B_i} - y_{A_i}$

b. Expliquer pourquoi le second vecteur n'est pas représentée par les deux nombres 3,5 et 2,5.

Exercice 2062



- 1. Graphiquement, déterminer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} .
- a. Donner les coordonnées des points G, H, K, L, M
 - b. En déduire, par le calcul, les coordonnées des vecteur \overrightarrow{GH} , \overrightarrow{KL} et \overrightarrow{MN} .

Exercice 940

On considère le plan muni d'un repère orthonormal (O; I; J). On considère les quatre points suivants dont les coordonnées sont données:

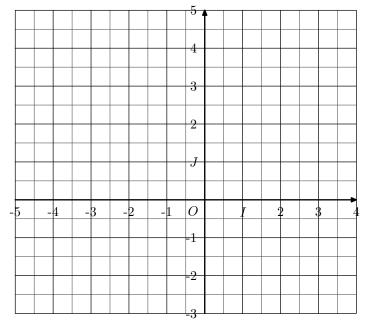
$$A(3;2)$$
 ; $B(-1;4)$; $C(-4;0)$; $D(0;-2)$

1. Par le calcul:

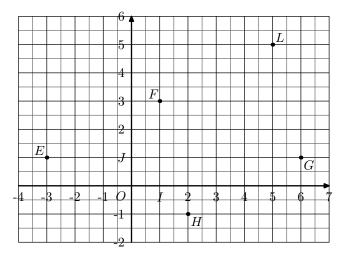
a. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{DC} .

Seconde - Les vecteurs - http://chingatome.fr

- b. Que peut-on dire des vecteurs \overrightarrow{AB} et \overrightarrow{DC} ? Justifier.
- c. Quelle est la nature du quadrilatère ABCD?
- 2. Observons : dans le repère ci-dessous, placer les quatre points et vérifier les résultats de la question 1...



On munit le plan d'un repère (O; I; J) orthonormé et on considère les cinq points représentés ci-dessous :



- 1. Graphiquement, déterminer les coordonnées des points E, F, G, H, L.
- 2. a. Déterminer, par le calcul, les coordonnées des vecteurs \overrightarrow{FL} et \overrightarrow{HG} .
 - b. En déduire la nature de FLGH.
- 3. a. Déterminer, par le calcul, les coordonnées du vecteur
 - b. Préciser la position de F sur le segment [EL]. Justifier.
- 4. Recopier et compléter l'égalité :

$$\overrightarrow{FL} + \overrightarrow{EH} = \overrightarrow{\dots}$$

Exercice 498

Dans un repère orthonormé (O; I; J), on considère les quatre points suivants caractérisés par leurs coordonnées :

$$A\left(\frac{5}{3}\,;\frac{7}{4}\right) \ \ \, ; \ \ \, B\left(\frac{11}{3}\,;-\frac{5}{4}\right) \ \ \, ; \ \ \, C\left(\frac{16}{7}\,;\frac{12}{5}\right) \ \ \, ; \ \ \, D\left(\frac{2}{7}\,;\frac{27}{5}\right)$$

Justifier que le quadrilatère ABCD est un parallélogramme.

7. Multiplications par un reel :

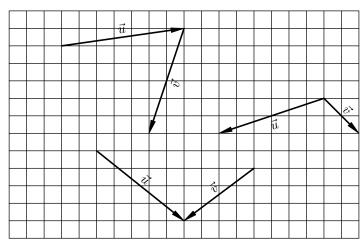
Exercice 524

Par analogie avec les nombres relatifs, on définit la soustraction des vecteurs à l'aide de l'addition de l'opposé. Ainsi, on définit la soustraction du vecteur \overrightarrow{u} par le vecteur \overrightarrow{v} par : $\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v})$

$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v})$$

- 1. Pour tout vecteur \overrightarrow{u} du plan, que peut-on dire de : $\overrightarrow{u} \overrightarrow{u}$?
- 2. Dans chacun des trois cas ci-dessous, dessiner un repré- $\underline{\operatorname{sentant}}\,\underline{\operatorname{de}}\,\operatorname{la}\,\operatorname{soustraction}:$

$$\overrightarrow{u} - \overrightarrow{v}$$



Exercice 495

DGCB

Déterminer un représentant de chacune des sommes cidessous:

- 1. $\overrightarrow{EI} \overrightarrow{GF}$
- 2. $\overrightarrow{HE} + \overrightarrow{BI} \overrightarrow{JF}$
- 3. $\overrightarrow{FG} \overrightarrow{IF} \overrightarrow{GE}$

Exercice 484

Soient A et B deux points du plan, on note I le milieu du segment [AB]

1. Compléter les pointillés pour vérifier la relation vectorielle suivante :

$$\overrightarrow{AI} + \overrightarrow{AI} = \overrightarrow{A \dots}$$

- 2. Recopier et compléter avec les mots "double" et "moitié" les phrases suivantes :

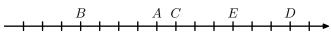
 - a. \overrightarrow{AI} est ... de \overrightarrow{AB} b. \overrightarrow{AB} est ... de \overrightarrow{AI}
- 3. En rapport avec la question précédente, compléter les pointillés avec le nombre adéquat :

a.
$$\overrightarrow{AI} = \dots \overrightarrow{AB}$$

b.
$$\overrightarrow{AB} = \dots \overrightarrow{AI}$$

Exercice 515

Sur une droite graduée, on place les points A, B, C, D, E:



Pour chaque question, déterminer la valeur du nombre k vérifiant l'égalité:

a.
$$\overrightarrow{BC} = k \cdot \overrightarrow{AC}$$

b.
$$\overrightarrow{ED} = k \cdot \overrightarrow{AC}$$

c.
$$\overrightarrow{AC} = k \cdot \overrightarrow{CA}$$

d.
$$\overrightarrow{ED} = k \cdot \overrightarrow{CA}$$

e.
$$\overrightarrow{EA} = k \cdot \overrightarrow{AB}$$

$$\overrightarrow{AC} = k \cdot \overrightarrow{BA}$$

Exercice 485

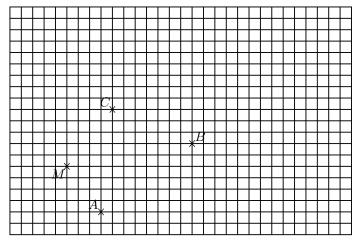
Soit ABC un triangle quelconque. Placer les points D et Evérifiant les relations vectorielles suivantes :

$$\overrightarrow{AD} = 2 \cdot \overrightarrow{AB} \quad ; \quad \overrightarrow{AE} = 2 \cdot \overrightarrow{AC}$$

Comparer \overrightarrow{BC} et \overrightarrow{DE} . Justifier.

Exercice 2917

Dans le plan, représenté ci-dessous muni d'un quadrillage, on considère les points A, B, C, M:



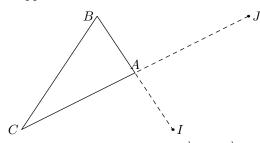
Donner un représentant du vecteur \overrightarrow{u} défini par la relation :

$$\overrightarrow{u} = 2 \cdot \overrightarrow{AB} + \overrightarrow{CB} - \overrightarrow{AC}$$

- 1. Placer le point N tel que : $\overrightarrow{MN} = \overrightarrow{u}$.
- 2. On définit le vecteur \overrightarrow{v} défini par : $\overrightarrow{v} = \overrightarrow{CB} + \frac{1}{3} \cdot \overrightarrow{AC}$ Montrer que les vecteurs $\stackrel{\rightarrow}{u}$ et $\stackrel{\rightarrow}{v}$ sont colinéaires.

Exercice 5153

Dans le plan, on considère le triangle quelconque ABC. On note respectivement I et J les symétriques respectifs de B et de C par rapport à A:



Exprimer en fonctions des vecteurs \overrightarrow{AB} et \overrightarrow{AC} les vecteurs suivants:

a.
$$\overrightarrow{IA}$$

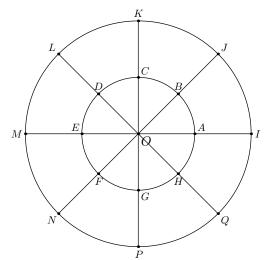
b.
$$\overline{A}$$
.

c.
$$\overrightarrow{BC}$$

e.
$$\overrightarrow{IJ}$$

Exercice 6544

On considère les deux cercle concentriques de centre O et dont le rayon de l'un est le double de l'autre :



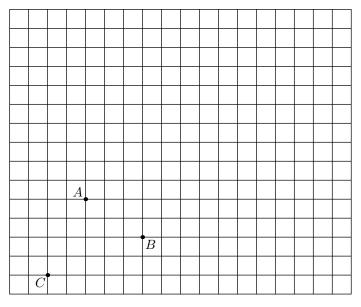
- 1. Justifier l'égalité vectorielle : $\overrightarrow{LJ} = 2 \cdot \overrightarrow{DB}$
- 2. Sans justification, compléter les égalités :

a.
$$\overrightarrow{ED} = \overrightarrow{\cdots} = \frac{1}{2} \cdot \overrightarrow{\cdots} = \frac{1}{2} \cdot \overrightarrow{\cdots}$$

b. $\overrightarrow{FB} = 2 \cdot \overrightarrow{\cdots} = 2 \cdot \overrightarrow{\cdots} = \frac{1}{2} \cdot \overrightarrow{\cdots}$

b.
$$\overrightarrow{FB} = 2 \cdot \dots = 2 \cdot \dots = \frac{1}{2} \cdot \dots$$

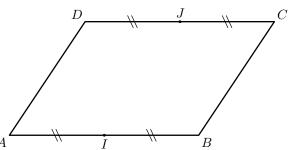
On considère les trois points A, B et C présentés dans le quadrillage ci-dessous:



- 1. a. Placer le point M vérifiant la relation vectorielle : $\overrightarrow{AM} = 2 \cdot \overrightarrow{CA}$
 - b. Placer le point N vérifiant la relation vectorielle : $\overrightarrow{AN} = \overrightarrow{AB} + 2 \cdot \overrightarrow{CB}$
- 2. Démontrer, à l'aide du calcul vectoriel, que les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont deux vecteurs colinéaires.

Exercice 4813

On considère le parallélogramme ABCD représenté cidessous où les points I et J sont les milieux respectifs des segments [AB] et [CD].



Pour chaque question, donner sans justifification un vecteur égal à l'expression proposée :

a.
$$\overrightarrow{AD} + \overrightarrow{IB}$$

b.
$$\overrightarrow{AI} + \overrightarrow{CJ}$$

a.
$$\overrightarrow{AD} + \overrightarrow{IB}$$
 b. $\overrightarrow{AI} + \overrightarrow{CJ}$ c. $2 \cdot \overrightarrow{AJ} + 2 \cdot \overrightarrow{CB}$

8. Coordonnées et propriétés algébriques :

Exercice 516

On considère le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ quelconque et les trois points suivants déterminés par leurs coordonnées :

$$A(2;1)$$
 ; $B(3;2)$; $C(-1;-1)$

- 1. a. Déterminer les coordonnées du vecteur $3 \cdot \overrightarrow{AB}$.
 - b. Déterminer les coordonnées du point D tel que : $\overrightarrow{AD} = 3 \cdot \overrightarrow{AB}$
- 2. a. Déterminer les coordonnées du vecteur définie par l'expression : $2 \cdot \overrightarrow{AB} - 4 \cdot \overrightarrow{AC}$
 - b. Déterminer les coordonnées du point E vérifiant la relation: $\overrightarrow{AE} = 2 \cdot \overrightarrow{AB} - 4 \cdot \overrightarrow{AC}$
- 3. Déterminer les coordonnées du point F tels que :

ABCF soit un parallélogramme.

Exercice 518

On considère le plan muni d'un repère (O; I; J) orthonormé d'unité graphique $1 \, cm$.

- 1. Construire le repère et placer les points A, B et C de coordonnées respectives (-2;1), (0;3) et (3;0).
- 2. a. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
 - b. Déterminer les coordonnées du vecteur $\overrightarrow{AB} + \overrightarrow{AC}$.
- 3. En déduire les coordonnées du point D vérifiant la relation: $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$
- 4. Justifier que le quadrilatère ABDC est un parallélogramme.

9. Colinéarité de vecteurs :

Exercice 520

Dans le cas de deux vecteurs colinéaires \overrightarrow{u} et \overrightarrow{v} , il existe un réel k établissant l'égalité :

$$u' = k \cdot v'$$

Le réel k s'appelle le coefficient de colinéarité du vecteur upar rapport au vecteur v

1. Pour chaque question, déterminer le coefficient de colinéarité de \overrightarrow{u} par rapport à \overrightarrow{v} :

- a. $2 \cdot \overrightarrow{u} = 3 \cdot \overrightarrow{v}$ b. $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{0}$ c. $\frac{1}{2} \cdot \overrightarrow{u} = \frac{3}{4} \cdot \overrightarrow{v}$ d. $3 \cdot \overrightarrow{u} 2 \cdot \overrightarrow{v} = \overrightarrow{0}$
- e. $3 \cdot (\overrightarrow{u} 2 \cdot \overrightarrow{v}) = \overrightarrow{0}$ f. $-2 \cdot (\overrightarrow{u} + \overrightarrow{v}) = 2 \cdot \overrightarrow{u} + 3 \cdot \overrightarrow{v}$
- 2. Pour chaque question, citer les couples de vecteurs colinéaires et le coefficient associé de colinéarité de \overrightarrow{u} par rapport à v':

a.
$$\overrightarrow{u}(-1;2)$$
 ; $\overrightarrow{v}(4;-8)$

b.
$$\overrightarrow{u}(3;2)$$
 ; $\overrightarrow{v}(9;4)$

c.
$$\overrightarrow{u}(2;3)$$
 ; $\overrightarrow{v}(4,2;6,3)$

b.
$$\overrightarrow{u}(3;2)$$
 ; $\overrightarrow{v}(9;4)$
c. $\overrightarrow{u}(2;3)$; $\overrightarrow{v}(4,2;6,3)$
d. $\overrightarrow{u}(0,7;4,1)$; $\overrightarrow{v}(-2,8;16,4)$

On munit le plan d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$:

1. Montrer que les points suivants sont alignés :
$$A(0;-1)$$
 ; $B(2;0)$; $C(-2;-2)$

2. Déterminer si les points suivants sont alignés :
$$K(3;-4)$$
 ; $L(2;-2)$; $M(-1;3)$

$$O(3\,;2)\quad;\quad P(4\,;5)\quad;\quad Q(\,1\,;-202\,)\quad;\quad R(101\,;98)$$

Déterminer si les droites (OP) et (QR) sont parallèles.

Exercice 517

Dans un un repere $\left(O\,;\,\overrightarrow{i}\,;\,\overrightarrow{j}\,\right),$ on considère les points :

$$A(3;-5)$$
 ; $B(-2;0)$; $C(147;-13)$; $D(-53;187)$

Etablir que les droites (AB) et (CD) sont parallèles.

Exercice 1144

On munit le plan d'un repère (O; I; J) orthonormal.

1. On considère les points :
$$A(5;3)$$
 ; $B(17;6)$; $C(-3;1)$

Montrer que les points A, B et C sont alignés.

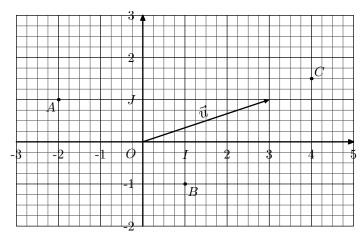
2. On considère les points :

$$D(5;-2)$$
 ; $E(-3;10)$; $F(-3;-2)$; $G(3;-11)$

Montrer que les droites (DE) et (FG) sont parallèles.

Exercice 6624

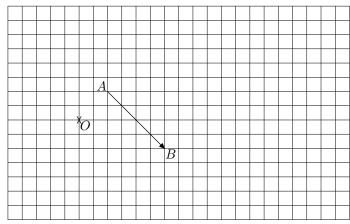
On munit le plan d'un repère (O; I; J) et on considère les points A, B et C ci-dessous :



- 1. a. Donner les coordonnées des points A, B et C.
 - b. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{BC} .
 - c. En déduire les coordonnées du vecteur \vec{u} défini par :
- 2. Justifier que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires.

Exercice 6998

Ci-dessous sont représentés le point A et le vecteur AB:

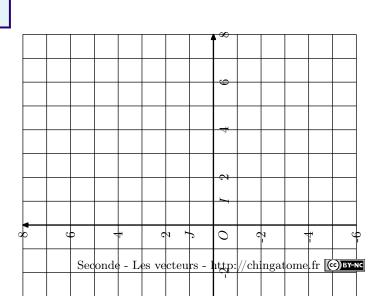


- 1. a. Tracer le vecteur $\overrightarrow{A'B'}$ image du vecteur \overrightarrow{AB} par l'homothétie de centre O et de rapport 3.
 - b. Tracer le vecteur $\overrightarrow{A''B''}$ image du vecteur \overrightarrow{AB} par l'homothétie de centre O et de rapport $-\frac{1}{2}$.
- 2. Que peut-on dire des vecteurs \overrightarrow{AB} , $\overrightarrow{A'B'}$ et $\overrightarrow{A''B''}$?

10. Recherche des coordonnées d'un point :

Exercice 2774

On munit le plan d'un repère (O; I; J) orthonormé :



On considère les trois points A, B, C de coordonnées respectives (2; -2), (-3; 4), (2; 1).

- 1. Considérons le point D tel que le quadrilatère ABCDsoit un parallélogramme; notons $(x_D; y_D)$ les coordonnées du point D:
 - a. Déterminer les coordonnées du vecteur AB.
 - b. Justifier que les coordonnées du point D vérifient les deux égalités suivantes :

$$2 - x_D = -5$$
 ; $1 - y_D = 6$

- c. En déduire les coordonnées du point D.
- d. En utilisant le quadrillage de votre cahier, créer un repère et y placer les points pour vérifier votre résultat.
- En utilisant une méthode équivalente, déterminer les coordonnées du point E tel que ACEB soit un parallélogramme.

Dans un repère (O; I; J) orthonormé, on considère les points :

$$A(1;2)$$
 ; $B(-1;4)$; $C(-2;1)$

On considère un point K tel que ACBK soit un parallélogramme:

- 1. Donner une relation vectorielle caractérisant le point K.
- 2. Déterminer les coordonnées du point K.

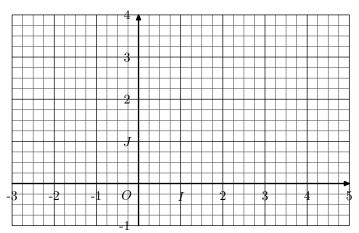
Exercice 521

On munit le plan d'un repère (O; I; J):

- 1. Soit A(3;1), B(5;-2), C(-1;0) trois points du plan.
 - a. Déterminer les coordonnées du vecteur \overrightarrow{AB} .
 - b. Soit D un point du plan réalisant l'égalité : CD = ABDéterminer les coordonnées du point D.
- 2. Soit E(12,1;34), F(25,4;10,5) et G(30;-2). Déterminer les coordonnées du point H afin que le quadrilatère EFGH soit un parallélogramme.

Exercice 927

On munit le plan d'un repère (O; I; J) orthonormé représenté ci-dessous :



1. a. Placer les deux points suivants :

$$A(-2;1)$$
 ; $B(1;2)$

b. Déterminer graphiquement les coordonnées du vecteur

\overrightarrow{AB} .

- 2. a. Placer les points R et C images respectives des points O et B par la translation de vecteur AB.
 - b. Préciser les coordonnées des points R et C.
- 3. Citer deux vecteurs égaux à \overrightarrow{AB} . Justifier que BCRO est un parallélogramme.
- 4. Recopier et compléter sans justification les égalités :

$$\overrightarrow{OA} + \overrightarrow{AB} = \dots$$
 ; $\overrightarrow{CB} + \overrightarrow{CR} = \dots$

5. Soit K le centre du parallélogramme BCRO. Calculer les coordonnées de K.

Exercice 4814

On munit le plan d'un repère (O; I; J). On considère alors les deux points A, B et le vecteur \overrightarrow{u} définis par : A(0;-4) ; B(2;4) ; $\overrightarrow{u}(-6;10)$

$$A(0;-4)$$
 ; $B(2;4)$; $\overrightarrow{u}(-6;10)$

On définit le point C comme l'image du point A par la translation du vecteur u.

- 1. Justifier que le point C a pour coordonnées (-6;6).
- 2. Déterminer les coordonnées du point D tel que ABCDsoit un parallélogramme.

On admet les mesures : $AB = 2\sqrt{17}$; $AC = 2\sqrt{34}$

3. Déterminer la nature du quadrilatère ABCD.

Exercice 307

Dans le plan muni d'un repère (O;I;J), on considère les trois points A, B et C de coordonnées :

$$A(2;1)$$
 ; $B(-1;3)$; $C(0;-2)$; $D(4;4)$

1. a. Déterminer les coordonnées du point M vérifiant la relation vectorielle suivante:

$$\overrightarrow{CM} = 2 \cdot \overrightarrow{AB}$$

- b. Montrer que les points M, B et D sont alignés.
- a. Déterminer les coordonnées du point N vérifiant la relation vectorielle suivante: $4 \cdot \overrightarrow{AN} - \overrightarrow{BN} - 2 \cdot \overrightarrow{CN} = \overrightarrow{0}$
 - b. Montrer que les points N, B et D sont alignés.

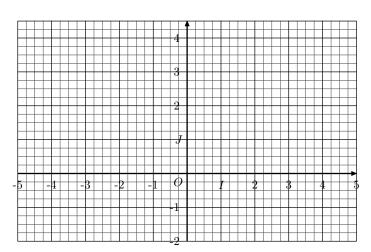
Exercice 6625

On considère le plan muni d'un repère (O; I; J). Soit A, B et C trois points du plan de coordonnées respectives: (-3;-1); (2;2); (4;0)

Déterminer les coordonnées du point D tel que les droites (AB) et (CD) soient parallèles et que le point D ait -4 pour ordonnées.

Exercice 6690

Le plan est muni d'un repère orthonormé. On considère les points A(-2,5;0,5), B(-1,5;2,5) et C(0,5;-1).



- 1. Placer les points A, B et C dans le repère ci-dessous.
- 2. Déterminer, par le calcul, les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

- 3. Placer le point D tel que : $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$ (On fera apparaître les traits de construction)
- 4. a. Donner les coordonnées du vecteur obtenu par la somme: $A\vec{B} + \overrightarrow{AC}$.
- b. En déduire, par le calcul, les coordonnées du point D. Pour la suite, on admet que D(1,5;1).
- 5. a. Déterminer les coordonnées du vecteur $C\dot{D}$.
 - b. En déduire que le quadrilatère ABDC est un parallélograme.
- 6. ABDC est-il un rectangle? Justifier.
- 7. On donne $E\left(-\frac{3}{4};4\right)$. Les points A, B et E sont-ils ali-

11. Repérage et vecteur : géométrie analytique

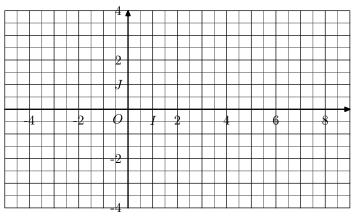
Exercice 926

On considère le plan muni d'un repère (O; I; J) orthonormé dont l'unité est le centimètre.

- Tracer un tel repère et tout au long de l'exercice, compléter votre représentation.
- Placer les points : M(1;3); N(-1;5); P(-3;1)
- Etablir les égalités suivantes : $MN = 2\sqrt{2} \; ; NP = MP = 2\sqrt{5} .$
- En déduire la nature du triangle MNP.
- Soit A le milieu de [MN]. Montrer, sans calcul, que le triangle APN est rectangle.
- Calculer les coordonnées de A.
- Construire le point R tel que : $\overrightarrow{MR} = \overrightarrow{PN}$
- Calculer les coordonnées du vecteur \overrightarrow{PN} .
- Déduire des questions 6. et 7. les coordonnées du point

Exercice 945

On considère muni d'un repère orthonormal (O; I; J) dont la représentation est donnée ci-dessous :



On considère les trois points suivants :

$$A(-4;3)$$
 ; $B(3;2)$; $C(1;-2)$

Partie A

- 1. Placer les points A, B, C dans le repère (O; I; J).
- 2. a. Calculer AB.
 - b. On admet que le calcul donne : $AC = \sqrt{50}$; $BC = \sqrt{20}$. Que peut-on en déduire pour le triangle ABC?
- 3. Soit H le milieu du segment [BC]. Vérifier par le calcul que H a pour coordonnées (2;0).
- 4. Justifier que la droite (AH) est une hauteur du triangle
- 5. a. Prouver que : $AH = 3\sqrt{5}$.
 - b. Calculer l'aire du triangle ABC

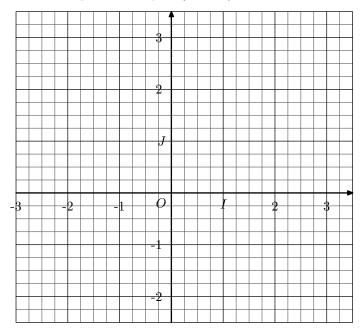
Partie B

- 1. Calculer les coordonnées du vecteur \overrightarrow{AC} .
- 2. Le point D est l'image du point B par la translation de vecteur \overrightarrow{AC} .
 - a. Placer le point D.
 - b. Montrer par le calcul que D a pour coordonnées
- 3. Quelle est la nature du quadrilatère ACDB? Justifier.

12. Droites affines et vecteurs directeurs \bowtie

Exercice 552

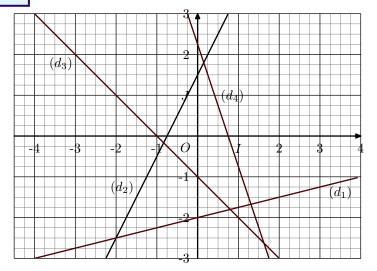
On munit le plan d'un repère (O; I; J) orthonormal :



- 1. On considère la droite (d) passant par les deux points : A(-1;-2) ; B(3;3)
 - a. Tracer la droite (d).
 - b. Déterminez le coefficient directeur de la droite (d).
 - c. On note a le coefficient directeur de la droite (d). Tracer un représentant du vecteur $\overrightarrow{u}(1;a)$
 - d. Que remarque-t-on?
- 2. On considère la droite (Δ) dont l'équation réduite est : $(\Delta): \ y = -\frac{3}{2} \cdot x + 1$
 - a. En déterminant les coordonnées de deux points C et D quelconque de (Δ) , tracer la droite (Δ) .
 - b. Tracer un représentant du vecteur $\overrightarrow{v}\left(1;-\frac{3}{2}\right)$
 - c. Etablir que les vecteur \overrightarrow{v} et \overrightarrow{CD} sont colinéaires?

Exercice 541

Dans le plan muni du repère (O; I; J), on considère les quatre droites ci-dessous:



- a. On considère A et B deux points quelconques de la droite (d_1) . Déterminer le coefficient directeur de la droite (d_1) .
 - b. Parmi les vecteurs suivants, citer le vecteur ayant même direction que la droite (d_1) :

$$\overrightarrow{u}(1;4) \qquad ; \quad \overrightarrow{v}\left(1;-\frac{1}{2}\right) \quad ; \quad \overrightarrow{w}\left(1;\frac{1}{4}\right)$$

$$\overrightarrow{r}\left(1;-\frac{1}{4}\right) \quad ; \quad \overrightarrow{s}\left(1;\frac{1}{2}\right)$$

2. Pour chacune des droites (d_2) , (d_3) , (d_4) , donner, sans justification, le vecteur de même direction que la droite et ayant 1 pour valeur de son abscisse.

Exercice 546

On considère le plan muni d'un repère (O; I; J) orthonormé.

Pour chacune des questions, déterminer l'équation de la droite passant par le point M et ayant le vecteur u' pour vecteur directeur:

a.
$$M(0;2)$$
; $\overrightarrow{u}\left(1;\frac{1}{2}\right)$ b. $M\left(0;-\frac{3}{2}\right)$; $\overrightarrow{u}\left(2;1\right)$

c.
$$M(1;2); \overrightarrow{u}(3;2)$$
 d. $M(-4;1); \overrightarrow{u}(-2;1)$

Exercice 2904

Associer à chacune des équations de droite ci-dessous :

1.
$$y = 2x + 1$$
 2. $y = -\frac{3}{2}x - 2$ 3. $-2x - y + 3 = 0$

1.
$$y = 2x + 1$$
 2. $y = -\frac{3}{2}x - 2$ 3. $-2x - y + 3 = 0$
4. $y = \frac{2}{3}x + 1$ 5. $y = \frac{1}{6}x - \frac{1}{2}$ 6. $-x + 3y - 2 = 0$

un vecteur directeur parmi :

un vecteur directeur parmi :

a.
$$\overrightarrow{u}(3;2)$$
b. $\overrightarrow{v}(-2;-4)$
c. $\overrightarrow{w}(-2;4)$
d. $\overrightarrow{r}\left(\frac{1}{2};\frac{1}{6}\right)$
e. $\overrightarrow{s}(6;1)$
f. $\overrightarrow{t}(-4;6)$

$$r'\left(\frac{1}{2};\frac{1}{6}\right)$$
 e. $s'(6;1)$ f. $t'(-4;6)$