Cercle et trigonométrie

Partie A : quelques notions

On considère le plan muni d'un repère cartésien (O; I; J).

Le point A est situé sur le cercle de centre O et de rayon 2 et sur la demi-droite formant un angle de 40° avec [Ox).

On dit que le point A a pour **coordonnées polaires** 2 et 40°. Mathématiquement, on note $[2; 40^{\circ}]$. Geogebra note (2;40°) les coordonnées polaires du point A (on remarquera le point virgule dans la notation)

Exercice 1

- 1. Donner les coordonnées polaires des points B, C, I, J.
- 2. Placer les points suivants dans le plan : $D[3; 120^{\circ}]$; $E[2; 90^{\circ}]$; $F[1; 180^{\circ}]$; $G[1; 20^{\circ}]$
- 3. a. Déterminer la valeur exacte de la longueur des arcs de cercle suivant : \widehat{IF} ; \widehat{IJ} ; \widehat{IG} ; \widehat{IB}
 - b. On considère le cercle de centre O et passant par I. Pour un arc de ce cercle mesurant α^{o} , on note $\ell(\alpha)$ la longueur de cet arc.

Compléter le tableau de proportionnalité suivant :

×	α	360°	180^{o}	90^{o}	30^{o}			
	$\ell(\alpha)$					$\frac{\pi}{4}$	$\frac{2\pi}{3}$	

Exercice 2

On appelle **cercle trigonométrique** d' un repère orthonormé, le cercle de centre l'origine du repère, de rayon 1.

1. a. Quels sont les coordonnées polaires de A?

- b. Dans le triangle rectangle OAA_1 , déterminer la mesure des segments $[OA_1]$ et $[A_1A]$.
- c. Donner les coordonnées cartésiennes de A.

2. On définit les points suivants :

 $B[1; 45^{o}]$; $C[1; 60^{o}]$; $D[1; 150^{o}]$

Déterminer les coordonnées cartésiennes de ces points.

Cercle et trigonométrie

Partie A : quelques notions

On considère le plan muni d'un repère cartésien (O; I; J).

Le point A est situé sur le cercle de centre O et de rayon 2 et sur la demi-droite formant un angle de 40° avec [Ox).

On dit que le point A a pour coordonnées polaires 2 et 40°. Mathématiquement, on note $[2; 40^{\circ}]$. Geogebra note $(2; 40^{\circ})$ les coordonnées polaires du point A (on remarquera le point virgule dans la notation)

Exercice 1

- 1. Donner les coordonnées polaires des points B, C, I, J.
- 2. Placer les points suivants dans le plan : $D[3; 120^{\circ}]$; $E[2; 90^{\circ}]$; $F[1; 180^{\circ}]$; $G[1; 20^{\circ}]$
- 3. a. Déterminer la valeur exacte de la longueur des arcs de cercle suivant : \widehat{IF} ; \widehat{IJ} ; \widehat{IG} ; \widehat{IB}
 - b. On considère le cercle de centre O et passant par I. Pour un arc de ce cercle mesurant α^{o} , on note $\ell(\alpha)$ la longueur de cet arc.

Compléter le tableau de proportionnalité suivant :

X	α	360°	180°	90°	30^{o}			
	$\ell(\alpha)$					$\frac{\pi}{4}$	$\frac{2\pi}{3}$	

Exercice 2

On appelle **cercle trigonométrique** d' un repère orthonormé, le cercle de centre l'origine du repère, de rayon 1.

- 1. a. Quels sont les coordonnées polaires de A?
 - b. Dans le triangle rectangle OAA_1 , déterminer la mesure des segments $[OA_1]$ et $[A_1A]$.
 - c. Donner les coordonnées cartésiennes de A.
- 2. On définit les points suivants :

 $B\bigl[1\,;\,45^o\bigr] \hspace{0.1 in}; \hspace{0.1 in} C\bigl[1\,;\,60^o\bigr] \hspace{0.1 in}; \hspace{0.1 in} D\bigl[1\,;\,150^o\bigr]$ Déterminer les coordonnées cartésiennes de ces points.

Cercle et trigonométrie Partie B : Etude avec Geogebra

Exercice 3
1. Dans Geogebra, cacher les axes en déselectionnant l'op- tion :
barre des menus \rightsquigarrow Affichage \rightsquigarrow Axes
2. Afficher le champ de saisie en activant l'option : Affichage \rightsquigarrow Champs de saisie \rightsquigarrow Afficher
 3. Saisissez les commandes suivantes : a. I=(0,0) b. Q=(-1,0) c. c=cercle[Q,I] d. s=segment[I,2pi] e. M=point[s] f. N=Rotation[I,360/(2pi)*x(M)°,Q] 4. Déplacer le point M et justifier que l'arc ÎN et le segment [IM] sont toujours de même longueur. 5. En effectuant un clic-droit sur le point M, activer la
$\begin{array}{c} \text{commande suivante :} \\ \hline menu \ contextuel \ du \ point \ M \ \rightsquigarrow \ Animer \end{array}$
Exercice 4
1. Ré-initialiser Geogebra : Fichier \rightsquigarrow Nouveau
2. Afficher les axes en cochant l'option Affichage \rightarrow Axes
3. Saisir les commandes suivants :
a. Q=(0,0) b. I=(1,0) c. c=cercle[Q,I]
d. a=curseur[0,360] e. N=(1;a ^o)
4. a. Donner au curseur a une valeur proche de 45.
b. Donner en fonction de a la longueur de l'arc IN .
c. Définir en fonction de a le point M appartenant à l'axe des abscisses tel que l'arc \widehat{IN} et le segment $[QM]$ ont même longueur. Quel est la définition de M ?
5. Définir le point P le point ayant l'abscisse du point M et l'ordonnée du point N . Quel est la définition de M ?
6. Animer le curseur a en effectuant un clic-droit sur celui-
ci et en cochant l'option suivante :
Vérifier que le point P a toujours la même abscisse que le point M et la même ordonnée que le point N .
7. Activer la trace du point P avec la commande :
menu contextuel de $P \rightsquigarrow$ Trace activée
8. Saisir la commande s=segment[I,6pi]
9. Connaissez-vous le nom de cette courbe?
10. a. Redéfinissons le point P par la commande : P=(x(M),x(N))
b. De quelle fonction obtient-on la courbe représentative ?
11. Avec la commande menu contextuel de $a \rightsquigarrow Propriété$

Modifier l'intervalle des valeurs prises par a en [0; 720].

Cercle et trigonométrie Partie B : Etude avec Geogebra

Exercice 3

LAUCICE 5
1. Dans Geogebra, cacher les axes en déselectionnant l'op- tion :
barre des menus \rightsquigarrow Affichage \rightsquigarrow Axes
2. Afficher le champ de saisie en activant l'option :
Affichage \rightsquigarrow Champs de saisie \rightsquigarrow Afficher
 3. Saisissez les commandes suivantes : a. I=(0,0) b. Q=(-1,0) c. c=cercle[Q,I]
 f. N=Rotation[I,360/(2pi)*x(M)°,Q]
4. Déplacer le point M et justifier que l'arc \widehat{IN} et le seg- ment $[IM]$ sont toujours de même longueur.
5. En effectuant un clic-droit sur le point M , activer la commande suivante : menu contextuel du point $M \rightsquigarrow Animer$
Exercise 4
1. Ré-initialiser Geogebra : Fichier \rightarrow Nouveau
2. Afficher les axes en cochant l'option Affichage \rightsquigarrow Axes
3. Saisir les commandes suivants :
a. Q=(0,0) b. I=(1,0) c. c=cercle[Q,I] d. a=curseur[0,360] e. N=(1;a^o)
4. a. Donner au curseur a une valeur proche de 45.
b. Donner en fonction de a la longueur de l'arc \widehat{IN} .
c. Définir en fonction de a le point M appartenant à l'axe des abscisses tel que l'arc \widehat{IN} et le segment $[QM]$ ont même longueur. Quel est la définition de M ?
5. Définir le point P le point ayant l'abscisse du point M et l'ordonnée du point N . Quel est la définition de M ?
6. Animer le curseur a en effectuant un clic-droit sur celui- ci et en cochant l'option suivante :
menu contextuel de $\mathbf{a} \rightsquigarrow Animer$
Vérifier que le point P a toujours la même abscisse que le point M et la même ordonnée que le point N .
7. Activer la trace du point P avec la commande :
menu contextuel de $P \rightsquigarrow$ Trace activée
8. Saisir la commande s=segment[I,6pi]
9. Connaissez-vous le nom de cette courbe?
 a. Redéfinissons le point P par la commande : P=(x(M), x(N))
b. De quelle fonction obtient-on la courbe représentative ?
11. Avec la commande menu contextuel de $a \rightsquigarrow Propriété$
Modifier l'intervalle des valeurs prises par $\mathbf{a} \in [0; 720]$.

http://chingatome.net (cc) BY-NC

Cercle et trigonométrie

Partie A : quelques notions

On considère le plan muni d'un repère cartésien (O; I; J).

Le point A est situé sur le cercle de centre O et de rayon 2 et sur la demi-droite formant un angle de 40° avec [Ox).

On dit que le point A a pour **coordonnées polaires** 2 et 40°. Mathématiquement, on note [2; 40°]. Geogebra note (2;40°) les coordonnées polaires du point A (on remarquera le point virgule dans la notation)

Exercice 1

- 1. Donner les coordonnées polaires des points B, C, I, J.
- 2. Placer les points suivants dans le plan : $D[3; 120^{o}] ; E[2; 90^{o}] ; F[1; 180^{o}] ; G[1; 20^{o}]$
- 3. a. Déterminer la valeur exacte de la longueur des arcs de cercle suivant : \widehat{IF} ; \widehat{IJ} ; \widehat{IG} ; \widehat{IB}
 - b. On considère le cercle de centre O et passant par I. Pour un arc de ce cercle mesurant α^{o} , on note $\ell(\alpha)$ la longueur de cet arc.

Compléter le tableau de proportionnalité suivant :

Exercice 2

On appelle **cercle trigonométrique** d' un repère orthonormé, le cercle de centre l'origine du repère, de rayon 1.

1. a. Quels sont les coordonnées polaires de A?

- b. Dans le triangle rectangle OAA_1 , déterminer la mesure des segments $[OA_1]$ et $[A_1A]$.
- c. Donner les coordonnées cartésiennes de A.
- 2. On définit les points suivants : $B[1; 45^o]$; $C[1; 60^o]$; $D[1; 150^o]$

Déterminer les coordonnées cartésiennes de ces points.

Partie B : Etude avec Geogebra

Exercice 3

- 1. Dans Geogebra, cacher les axes en déselectionnant l'option : barre des menus \rightsquigarrow Affichage \rightsquigarrow Axes
- 2. Afficher le champ de saisie en activant l'option : Affichage \rightsquigarrow Champs de saisie \rightsquigarrow Afficher
- 3. Saisissez les commandes suivantes :
 - a. I=(0,0) b. Q=(-1,0) c. c=cercle[Q,I]

```
d. s=segment[I,2pi] e. M=point[s]
```

```
f. N=Rotation[I,360/(2pi)*x(M)°,Q]
```

- 4. Déplacer le point M et justifier que l'arc \widehat{IN} et le segment [IM] sont toujours de même longueur.
- 5. En effectuant un clic-droit sur le point M, activer la commande suivante :

menu contextuel du point $M \rightsquigarrow Animer$

Exercice 4

- 1. Ré-initialiser Geogebra : Fichier \rightsquigarrow Nouveau
- 2. Afficher les axes en cochant l'option Affichage \rightsquigarrow Axes
- 3. Saisir les commandes suivants :
- a.
 Q=(0,0)
 b.
 I=(1,0)
 c.
 c=cercle[Q,I]

 d.
 a=curseur[0,360]
 e.
 N=(1;a^o)
- 4. a. Donner au curseur **a** une valeur proche de 45.
 - b. Donner en fonction de **a** la longueur de l'arc \widehat{IN} .
 - c. Définir en fonction de **a** le point M appartenant à l'axe des abscisses tel que l'arc \widehat{IN} et le segment [QM] ont même longueur. Quel est la définition de M?
- 5. Définir le point P le point ayant l'abscisse du point M
- et l'ordonnée du point N. Quel est la définition de M?
- 6. Animer le curseur **a** en effectuant un clic-droit sur celuici et en cochant l'option suivante :

menu contextuel de $\mathbf{a} \rightsquigarrow Animer$

Vérifier que le point P a toujours la même abscisse que le point M et la même ordonnée que le point N.

- 7. Activer la trace du point P avec la commande : menu contextuel de $P \rightsquigarrow$ Trace activée
- 8. Saisir la commande s=segment[I,6pi]
- 9. Connaissez-vous le nom de cette courbe?
- ____
- a. Redéfinissons le point P par la commande :
 P=(x(M),x(N))
 - b. De quelle fonction obtient-on la courbe représentative ?

11. Avec la commande menu contextuel de $a \rightsquigarrow Propriété$

Modifier l'intervalle des valeurs prises par $a \in [0; 720]$.