Exercice 1 (Bac STI2D Métropole 2013)

- 1. La forme exponentielle du nombre complexe z = -5 + 5i est :

- (a) $z = 5e^{i\frac{3\pi}{4}}$ (b) $z = 5\sqrt{2}e^{i\frac{3\pi}{4}}$ (c) $z = 5e^{-i\frac{\pi}{4}}$ (d) $z = 5\sqrt{2}e^{-i\frac{\pi}{4}}$
- 2. Si $z_1 = 2\sqrt{2}e^{i\frac{3\pi}{4}}$ et $z_2 = \sqrt{2}e^{-i\frac{\pi}{3}}$, alors le produit $z_1 \times z_2$ est un nombre
 - (a) de module 4 et dont un argument est $\frac{2\pi}{7}$
 - (b) de module $2\sqrt{2}$ et dont un argument est $\frac{5\pi}{12}$
 - (c) de module 4 et dont un argument est $\frac{5\pi}{12}$
- (d) de module $2\sqrt{2}$ et dont un argument est $\frac{13\pi}{12}$
- 3. Le nombre complexe $\frac{\sqrt{2} i\sqrt{2}}{\sqrt{2} + i\sqrt{2}}$ est égal à :
 - (a) 1
- (b) i
- (c) -1
- (d) -i
- 4. Le nombre complexe z de module $2\sqrt{3}$ et dont un argument est $\frac{2\pi}{3}$ a pour forme algébrique :

- (a) $\sqrt{3} 3i$ (b) $3 i\sqrt{3}$ (c) $-\sqrt{3} + 3i$ (d) $-3 + i\sqrt{3}$

Exercice 2 (Bac STI2D Nouvelle calédonie 2014)

On note i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

On considère les nombres complexes z_1, z_2 et z_3 définis par : $z_1 = 1 + i\sqrt{3}$, $z_2 =$ $e^{-i\frac{\pi}{4}}$ et $z_3 = e^{i\frac{\pi}{12}}$.

- 1. Déterminer l'écriture exponentielle de z_1 .
- 2. Déterminer l'écriture algébrique de z_2 .
- 3. Démontrer que $z_1 \times z_2 = 2z_3$.
- 4. En déduire l'écriture algébrique de z_3 .
- 5. En déduire que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$ et $\sin\left(\frac{\pi}{12}\right) = \frac{-\sqrt{2} + \sqrt{6}}{4}$.

Exercice 3 (Bac STI2D Antilles 2013)

Le plan complexe est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$

On note C l'ensemble des nombres complexes, et i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

- 1. On considère l'équation (E) d'inconnue z:(2-i)z=2-6i.
 - (a) Résoudre dans \mathbb{C} l'équation (E). On notera z_1 la solution de (E) que l'on écrira sous forme algébrique.
 - (b) Déterminer la forme exponentielle de z_1 .
 - (c) Soit z_2 le nombre complexe défini par : $z_2 = e^{-i\frac{\pi}{2}} \times z_1$. Déterminer les formes exponentielle et algébrique de z_2
- 2. Soit A, B et C les points du plan d'affixes respectives : $z_A = 2-2i$, $z_B = -2-2i$ et $z_{\rm C} = -4i$.
 - (a) Placer les points A, B et C dans le plan complexe.
 - (b) Calculer le produit scalaire $\overrightarrow{CA} \cdot \overrightarrow{CB}$.
 - (c) Déterminer la nature du triangle ABC.

Exercice 4 (Bac STI2D Antilles 2014)

Les parties A et B de cet exercice sont indépendantes.

Le plan est rapporté à un repère orthonormal $(O, \overrightarrow{u}, \overrightarrow{v})$ d'unités 5 cm.

On note i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

Soit z le nombre complexe de module 2 et d'argument $\frac{\pi}{2}$, \overline{z} est le nombre complexe conjugué de z.

PARTIE A

- 1. Donner les écritures algébriques de z, de \overline{z} et de $\frac{1}{2}\overline{z}$.
- 2. On considère le nombre complexe $p = \frac{2 + \overline{z}}{2 \overline{z}}$.
 - (a) Montrer que $p = -i\sqrt{3}$.
 - (b) Les points M, N et P sont les points d'affixes respectives 1, $\frac{1}{2}\overline{z}$ et p. Placer ces trois points dans le repère. Justifier l'alignement de ces trois points.

PARTIE B Soit u le nombre complexe défini par $u = \frac{1}{2}z$.

- 1. Écrire u sous la forme exponentielle.
- 2. (a) Donner l'écriture exponentielle puis l'écriture algébrique de u^3 .
 - (b) Vérifier les relations suivantes : $u^4 = -u$ et $u^5 = -u^2$.
 - (c) Vérifier que $1 + u + u^2 + u^3 + u^4 + u^5 + u^6 = 1$.