Exercice 1 (Calcul des termes d'une suite)

Dans chaque cas, calculer les trois premiers termes de la suite (u_n) définie par :

- 1. pour tout entier naturel n, $u_n = -2n + 1$;
- 2. pour tout entier naturel n non nul, $u_n = \frac{2^n}{n^2}$;
- 3. $u_0 = 1$ et pour tout entier $n \ge 1$, $u_n = -2 + 5u_{n-1}$

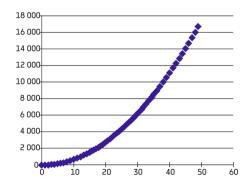
Exercice 2 (Limite infinie)

On considère les suites (u_n) et (v_n) définies respectivement pour tout entier naturel n par $u_n = 2, 1^n - 500n$ et $v_n = 2, 1 n^3 - 500n$.

- 1. (a) À l'aide d'une calculatrice, établir un tableau des valeurs prises par les deux suites pour n variant de 0 à 40 avec un pas de 5. Observer les valeurs obtenues. Quelle conjecture peut-on faire pour la limite de chacune de ces deux suites?
 - (b) En réglant la fenêtre graphique $(0 < X < 40, -10\ 000 < Y < 100\ 000)$, afficher les nuages de points représentant respectivement ces deux suites.
- 2. (a) À l'aide d'un algorithme, que l'on implémentera sur une calculatrice ou un ordinateur, déterminer un entier n_0 pour lequel $u_{n_0} \ge 10^{10}$.
 - (b) Modifier l'algorithme précédent pour déterminer un entier n_1 pour lequel $v_{n_1} \geq 10^{10}$.
- 3. On admet que les deux suites (u_n) et (v_n) ont pour limite $+\infty$. En s'appuyant sur les résultats précédents, expliquer en quoi ces deux suites ne tendent pas « de la même façon » vers $+\infty$.

Exercice 3 (Limite infinie)

Le nuage de points ci-contre représente les 50 premiers termes de la suite (u_n) définie pour tout entier naturel n par $u_n = 7n^2 - 3n + 5$.



1. Quelle conjecture peut-on faire sur la limite de la suite (u_n) ?

- 2. À l'aide d'un algorithme, que l'on implémentera sur une calculatrice ou un ordinateur, déterminer un entier N pour lequel $u_N \ge 10^5$.
 - (a) Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = 7x^3 3x + 5$. Calculer f'(x) et en déduire le sens de variation de f sur $[0; +\infty[$.
 - (b) Après avoir remarqué que, pour tout entier naturel $n, u_n = f(n)$, utiliser le résultat de la question précédente pour prouver que, pour tout entier $n \ge N, u_n \ge 10^5$.

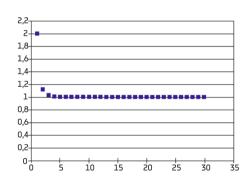
Exercice 4 (Limite finie)

Soit la suite (v_n) définie pour tout entier n naturel par : $v_n = \frac{2n^2 - 1}{n^2 + 1}$.

- 1. À l'aide d'un tableau de valeurs, faire une conjecture sur la limite éventuelle de la suite (v_n) .
- 2. À l'aide d'un algorithme, que l'on implémentera sur une calculatrice ou un ordinateur, déterminer un entier N pour lequel $|v_N 2| \le 10^{-5}$.

Exercice 5 (Limite finie)

Le nuage de points ci-contre représente les 30 premiers termes de la suite (u_n) définie pour tout entier naturel n par $u_n = 1 + \frac{1}{n^3}$.



- 1. Quelle conjecture peut-on faire sur le limites de la suite (u_n) ?
- 2. À l'aide d'un algorithme, que l'on implémentera sur une calculatrice ou un ordinateur, déterminer un entier N pour lequel $|u_N 1| \le 10^{-5}$.
- 3. (a) Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{1}{x^3}$. Calculer f'(x) et en déduire le sens de variation de f sur $]0; +\infty[$.
 - (b) Après avoir remarqué que, pour tout entier naturel n, $|u_n 1| = f(n)$, utiliser le résultat de la question précédente pour prouver que, pour tout entier $n \ge N$, $|u_n 1| \le 10^{-5}$.