Première Spécialité/Suites arithmétiques et géométriques

1. Quelques rappels:

Exercice 6516

Compléter les suites logiques de nombres pour obtenir les 8 premiers termes de chacune d'elles:

- 4 7 10 13 ...
- 3 6 12 24 ...
- 20 19 17 14 ...
- 5 7 11 17 ...
- 1 4 9 16 ...

Exercice 6517

On considère les deux procédés d'obtention suivant de nombres:

Procédure A

On multiplie le nombre donné par 3

Procédure B

Au nombre donné, on lui soustrait 2.

Pour chaque question, donner les six premiers termes obtenus en répétant les consignes autant de fois que nécessaire.

- 1. Le nombre de départ est 3 et on répète la procédure A;
- 2. Le nombre de départ est 11 et on répète la procédure B.

Exercice 2905

Rappels:

On considère une valeur x subissant une évolution pour obtenir la valeur y:

- Réduction de a%: $y = x \cdot \left(1 \frac{a}{100}\right)$
- Augmentation de a%: $y = x \cdot \left(1 + \frac{a}{100}\right)$
- 1. Trouver les coefficients multiplicateurs représentant chacune des évolutions suivantes:
 - (a.) +10%
- (b.) +2.5%
- (c.) +115%

- (d.) -22%
- (e.) -10.7%
- (f.) -65%
- 2. Pour chaque coefficient multiplicateur, retrouver l'évolution associée et le pourcentage correspondant:
 - (a.) 1,02
- (b.) 1,375
- (c.) 2,1

- (d.) 0.15
- (e.) 0,85
- (f.) 0,912

2. Introduction à la génération de suite :

Exercice réservé 2372

La société Mandine embauche Arthur au 1er Janvier 2009 avec un salaire de 1525€ et lui propose deux types d'avancement:

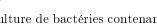
- Chaque 1^{er} Janvier, son salaire se verra augmenter de 32€.
- Chaque 1^{er} Janvier, son salaire augmente de 2 %.
- Compléter le tableau suivant en arrondissant les valeurs au dixième près:

Année	2009	2010	2011	2012
Avancement A				
Avancement B				
Année	2013	2014	2015	2016
Avancement A				
Avancement R				

A partir de quelle année, Arthur aura un salaire plus

important en choisissant l'avancement B?

Exercice 2906



Des scientifiques étudient une culture de bactéries contenant deux souches qu'on nommera A et B. Au début de l'expérience (au temps "0"), on dénombre 200

de bactéries de souches A et 300 bactéries de souches B. Les scientifiques relèvent les évolutions suivantes: à chaque minute, la population des bactéries A augmente de 10 %, alors que celle de la souche B diminue de 20 bactéries.

- 1. (a.) Au temps "0 min", quel est le pourcentage représenté par les bactéries de la souche A par rapport à l'ensemble des bactéries?
 - b. Au temps "1 min", quel est le pourcentage représenté par les bactéries de la souche A par rapport à l'ensemble des bactéries?
 - (c.) Compléter le tableau ci-dessous:

	A	В	С	D
1	Temps	Population de la souche A	Population de la souche B	Population totale
2	0	200	300	
3				
4				
5				
6		-		
7				

n désigne un nombre entier naturel $(n \in \mathbb{R})$.

On note a_n la population de bactéries de la souche A au temps " $n \min$ "; ainsi, $a_0 = 200$.

On note b_n la population de bactéries de la souche B au temps " $n \min$ "; ainsi $b_0 = 300$.

Compléter les pointillés ci-dessous:

$$a_1 = a_0 \dots \dots$$

$$b_1 = b_0 \dots$$

$$a_2 = a_1 \dots$$

$$b_2 = b_1 \dots \dots$$

$$b_3 = b_2 \dots \dots$$

$$a_3 = a_2 \dots \dots$$

$$a_4 = a_3 \dots \dots$$

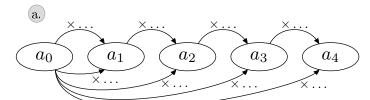
$$b_4 = b_3 \dots \dots$$

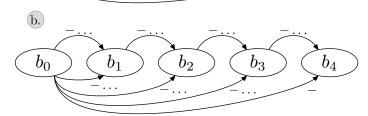
On généralise par :

$$a_{n+1} = a_n \dots$$

$$b_{n+1} = b_n \dots$$

3. Compléter les deux diagrammes ci-dessous:





4. Compléter les pointillées:

$$a_1 = a_0 \dots \dots$$

$$b_1 = b_0 \dots \dots$$

$$a_2 = a_0$$

$$b_2 = b_0 \dots$$

$$a_3 = a_0 \dots$$

$$b_3 = b_0 \dots$$

 $a_4 = a_0$

$$b_4 = b_0 \dots \dots$$

On généralise par:

$$a_n = a_0 \dots$$

$$b_n = b_0 \dots$$

3. Introduction au vocabulaire:

Exercice 6519

1. On considère la suite de nombres ci-dessous:

2 ; 3 ; 5 ; 8 ; 12 ; 17 ; 23 ; 30

- (a.) Dans cette suite, quel est le terme qui succède à 12?
- (b.) Dans cette suite, quel est le terme qui précède 8?
- (c.) Dans cette suite quel est le rang du terme ayant 2 pour valeur?
- d.) Dans cette suite quel est le rang du terme ayant 17 pour valeur?
- 2. De manière générale, on indique les termes d'une suite

en utilisant en index la position du terme dans la suite (on commence l'indéxation à 0):

 u_0 ; u_1 ; u_2 ; u_3 ; \cdots ; u_{n-1} ; u_n ; u_{n+1}

- (a.) Quel est le terme successeur de u_2 ?
- (b.) Quel est le terme prédécesseur de u_4 ?
- (c.) Quel est le terme successeur de u_n ?
- (d.) Quel est le terme successeur de u_{n+2} ?
- (e.) Quel est le terme prédécesseur de u_n ?
- (f.) Quel est le terme prédécesseur de u_{n+2} ?

4. Premiers calculs des termes d'une suite :

Exercice 6522

On considère les suites de nombres ci-dessous:

 $4 \;\; ; \;\; 7 \;\; ; \;\; 10 \;\; ; \;\; 13 \;\; ; \;\; 16 \;\; ; \;\; 19 \;\; ; \;\; 22 \;\; \dots$

- $; -2 ; 4 ; -8 ; 16 ; -32 ; 64 \dots$
- ; 3 ; 5 ; 8 ; 12 ; 17 ...
- $1 \; ; \; 4 \; ; \; 9 \; ; \; 16 \; ; \; 25 \; ; \; 36 \; \dots$

1; 1; 2; 3; 5; 8; 13...

 $1 \; ; \; 2 \; ; \; 1 \; ; \; 2 \; ; \; 1 \; ; \; 2 \; ; \; 1 \; \dots$

Associer à chacune de cette suite une relation ci-dessous qui permet d'obtenir un terme en fonction de ses prédédecesseurs:

1. $u_n + u_{n+1} = u_{n+2}$ 2. $\frac{2}{u_n} = u_{n+1}$

$$\boxed{2. \quad \frac{2}{u_n} = u_{n+1}}$$

3.
$$u_n + n = u_{n+1}$$
 4. $-2 \times u_n = u_{n+1}$
5. $u_n + 3 = u_{n+1}$ 6. $u_n = n^2$

6.
$$u_n = n^2$$

Exercice réservé 7305

On considère une suite (u_n) dont on connait la valeur de ses

cinq premiers termes:

$$u_0 = 0$$
 ; $u_1 = 11$; $u_2 = 20$; $u_3 = 27$; $u_4 = 32$

Parmi les expressions de suites ci-dessous, lesquelles permettent d'obtenir ces mêmes cinq premiers termes?

a.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = u_n + n + 11 \quad \text{pour tout } n \in \mathbb{N} \end{cases}$$

b.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = -u_n + 3n + 11 \quad \text{pour tout } n \in \mathbb{N} \end{cases}$$

c.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = u_n - 2n + 11 \text{ pour tout } n \in \mathbb{N} \end{cases}$$

d.
$$u_n = 13 \cdot n - 2 \cdot n^2$$
 e. $u_n = -n^2 + 12 \cdot n$

$$f. \quad u_n = 2 \cdot n^2 + 9 \cdot n$$

5. Suites arithmétiques :

Exercice 5121

- 1. Déterminer les cinq premiers termes de la suite (u_n) arithmétique de premier terme 2 et de raison 3.
- Déterminer les cinq premiers termes de la suite (v_n) arithmétique de premier terme 3 et de raison $-\frac{3}{2}$.

Exercice 8523

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=5$ et de raison 3. Déterminer les six premiers termes de cette

Exercice 5120

Soit (u_n) une suite arithmétique de raison r. Compléter les expressions suivantes:

$$u_{12} = u_5 + \dots \times r$$

a.
$$u_{12} = u_5 + \ldots \times r$$
 b. $u_{57} = u_{38} + \ldots \times r$

c.
$$u_3 = u_8 + \ldots \times r$$

c.
$$u_3 = u_8 + \ldots \times r$$
 d. $u_{23} = u_{38} + \ldots \times r$

Exercice 6530

On considère la suite $(u_n)_{n\in\mathbb{N}}$ arithmétique de premier terme

3 et de raison -2.

- 1. Déterminer la valeur des termes u_{12} et u_{43} .
- 2. Déterminer la valeur du rang n réalisant les égalités:

(a.)
$$u_n = -21$$
 (b.) $u_n = -57$

Exercice 8048

On considère la suite (u_n) arithmétique de premier terme 4 et de raison $\frac{1}{3}$

- 1. Déterminer la valeur du terme u_8 .
- 2. Déterminer le rang n tel que: $u_n = 16$

Exercice 8406

On considère la suite (u_n) définie sur \mathbb{N} arithmétique de premier terme 2 et de raison $\frac{3}{4}$

- 1. Déterminer la valeur du terme de rang 6.
- 2. Déterminer le rang du terme ayant pour valeur $\frac{53}{4}$

6. Suites arithmétiques: éléments caractéristiques :

Exercice réservé 2428

On considère la suite $(u_n)_{n\in\mathbb{N}}$ arithmétique dont on connait la valeur de deux termes : $u_{14}=2$; $u_{20}=0$

- Déterminer le premier terme et la raison de cette suite.
- (a.) Déterminer l'expression du terme u_n en fonction de la valeur de n.
 - b. Déterminer le rang du terme valant $\frac{10}{3}$

Exercice 8524

Soit $(v_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r.

- 1. Pour passer du terme v_7 au terme v_{15} , combien de fois ajoute-t-on la raison?
- 2. On donne les valeurs suivantes de termes:

$$v_7 = 13$$
 ; $v_{15} = 39$

Déterminer la valeur du premier terme et de la raison de la suite.

Exercice réservé 2400

Pour chacune des questions, la suite $(w_n)_{n\in\mathbb{N}}$, dont est donnée deux termes, est une suite arithmétique.

Déterminer la valeur de son premier terme et de sa raison:

(a.) $w_0 = 5$; $w_9 = 25$ (b.) $w_6 = 7$; $w_8 = 1$

C. $w_{15} = 54$; $w_{99} = 180$

Exercice 8359

7. Reconnaitre une suite arithmétique :

Exercice 6523

On considère les deux suites de nombres ci-dessous dont on donne les sept premiers termes:

Pour chacune des questions, peut-on conjecturer que la suite est une suite arithmétique?

Si oui, donner le premier terme et la raison. Si non, justifier votre rejet de cette affirmation.

Exercice 8046

On considère la suite (u_n) définie sur \mathbb{N} par la relation:

 $u_0 = 1$; $u_{n+1} = 3 \cdot u_n - 6 \cdot n + 1$ pour tout $n \in \mathbb{N}$

On considère une suite $(u_n)_{n\in\mathbb{N}}$ arithmétique tel que:

Déterminer les éléments caractéristiques des deux suites

• u_2 soit le double de u_0 ;

arithmétiques réalisant ces conditions.

• u_6 soit le carré de u_2 .

- 1. Déterminer les valeurs des quatres premiers termes.
- 2. Quelle conjecture peut-on émettre sur la nature de la suite et de ses élèments caractéristiques.

Exercice 7306

On considère la suite (u_n) définie par:

$$u_0 = 1$$
 ; $u_{n+1} = \frac{(n+2) \cdot u_n + 1}{n+1}$ pour tout $n \in \mathbb{N}$

- Déterminer les quatre premiers termes de la suite (u_n) .
- Conjecturer la nature de la suite (u_n) en justifiant votre démarche.

8. Suites géométriques :

Exercice 5122

- 1. Déterminer les quatre premiers termes de la suite (u_n) géométrique de premier terme 2 et de raison 3.
- 2. Déterminer les quatre premiers termes de la suite (v_n) géométrique de premier terme 3 et de raison $-\frac{3}{2}$

Exercice 8525

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0 = \frac{3}{8}$ et de raison 2. Déterminer les six premiers termes de cette

Exercice 5123

Soit (v_n) une suite géométrique de raison q. Compléter les expressions suivantes:

a.
$$u_7 = u_3 \times q$$
..

a.
$$u_7 = u_3 \times q^{\dots}$$
 b. $u_{25} = u_{11} \times q^{\dots}$

c.
$$u_3 = u_8 \times q^{\cdots}$$

c.
$$u_3 = u_8 \times q$$
 d. $u_{15} = u_{23} \times q$...

Exercice 8407

On considère la suite (u_n) définie sur \mathbb{N} géométrique de premier terme 5^3 et de raison $\frac{3}{7}$.

- Déterminer l'expression simplifiée du terme de rang 6.
- 2. Déterminer le rang du terme ayant pour valeur $\frac{5^{12}}{79}$

Exercice 6531

On considère la suite $(u_n)_{n\in\mathbb{N}}$ géométrique de premier terme $\frac{2^4}{3}$ et de raison $\frac{3}{2}$.

- 1. Déterminer la valeur des termes u_{11} et u_{28} .
- 2. Pour chaque question, déterminer le rang n réalisant l'égalité:

(a.)
$$u_n = \frac{3^8}{2^5}$$

(a.)
$$u_n = \frac{3^8}{2^5}$$
 (b.) $u_n = \frac{3^{19}}{2^{16}}$

Exercice 8049

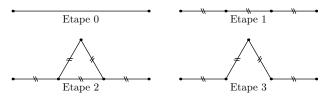
On considère la suite (u_n) géométrique, définie pour tout entier naturel n, de premier terme 4 et de raison $\frac{2}{3}$

- 1. Déterminer la valeur du terme u_4 .
- 2. A l'aide de la calculatrice, déterminer la valeur du rang *n* vérifiant: $u_n = \frac{8192}{177147}$

Exercice réservé 2928

Ci-dessous sont représentés les six premiers "flocons de Helge Von Koch" représentant un des fractales les plus simples:

Pour passer d'une construction à la suivante, on réalise la manipulation suivante sur chaque segment:



Chaque segment est partagé en trois parties égales (étape 1). On construit un triangle équilatéral sur le segment du milieu (étape 2). On efface le segment du milieu (étape 3).

- 1. (a.) Le passage de l'étape n°0 à l'étape n°1 fait apparaitre un triangle équilatéral. Surligner ce triangle en rouge.
 - (b.) Combien de segment comprend la figure de l'étape n°1? Combien de triangles équilatéral apparaitront à

l'étape n°2? Surligner ces triangles en rouge.

- On note (u_n) la suite numérique dont le terme de rang nest le nombre de segments composant la figure à l'étape
 - (a.) Justifier par une phrase que la suite (u_n) vérifie la

$$u_{n+1} = 4 \cdot u_n$$

- (b.) Exprimer le terme u_n en fonction de son rang n.
- (c.) Combien de segments comprend la figure de l'étape $n^{o}5?$
- 3. On suppose que le segment [AB] initial a pour longueur 1. On note (v_n) la suite numérique dont le terme de rang n est la longueur de la ligne polygone formant la figure à l'étape n^{ième}:
 - (a.) Justifier par une phrase que la suite (v_n) vérifie la re-

$$v_{n+1} = \frac{4}{3} \cdot v_n$$

(b.) Exprimer le terme v_n en fonction de son rang n.

9. Suites géométriques: éléments caractéristiques:

Exercice 8526

Soit $(v_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q.

- 1. Pour passer du terme v_{11} au terme v_{14} , par combien de fois multiplie-t-on par la raison?
- A partir des valeurs des deux termes suivants:

 $v_{11}=rac{4}{7}$; $v_{14}=rac{27}{14}$ Déterminer la valeur du premier terme et de la raison de la suite (v_n) .

Exercice réservé 2429

On considère la suite $(u_n)_{n\in\mathbb{N}}$ géométrique dont:

$$u_5 = 2$$
 ; $u_8 = \frac{27}{4}$

- 1. Déterminer le premier terme et la raison de cette suite.
- (a.) Donner l'expression explicite du terme u_n en fonction du rang n.
 - b. Déterminer le rang du terme valant $\frac{16}{27}$

Exercice 2401

Pour chaque question, la suite $(w_n)_{n\in\mathbb{N}}$ représente une suite géométrique dont deux termes sont données.

Déterminer le premier terme et la raison de ces suivantes.

(a.)
$$w_0 = 5$$
; $w_3 = 40$

(a.)
$$w_0 = 5$$
; $w_3 = 40$ (b.) $w_3 = \frac{3}{8}$; $w_6 = -\frac{3}{64}$

(c.)
$$w_{124} = 2 \times 10^{-4}$$
; $w_{128} = \frac{1}{8}$

Exercice 2412

Soit $(u_n)_{n\in\mathbb{N}}$ une suite dont on connait la valeur des deux termes suivants:

$$u_6 = 36$$
 ; $u_{10} = \frac{9}{4}$

Montrer qu'il existe au moins deux suites géométriques vérifiant ces conditions.

Exercice réservé 5827

Déterminer les progressions géométriques de sept termes (à termes réels) telles que la somme des trois premiers termes est égale à 2 et la somme des trois derniers termes est égale à 1250

10. Reconnaître une suite géométrique :

Exercice 6524

On considère les deux suites de nombres ci-dessous où sont donnés les six premiers termes:

a. 8; 4; 2; 1; $\frac{1}{2}$; $\frac{1}{4}$

b. 1 ; 3 ; 9 ; 18 ; 54 ; 162

Pour chacune des questions, peut-on conjecturer que la suite est une suite géométrique?

Si oui, préciser le premier terme et la raison. Sinon, justifier

Exercice réservé 5119 🧲 🖟 🤌 📜

1. On considère la suite (u_n) définie par:

 $u_0 = 1$; $u_{n+1} = 2 \cdot u_n + 3^n$ pour tout $n \in \mathbb{N}$.

- (a.) Déterminer les cinq premiers termes de (u_n) .
- (b.) Quelle conjecture peut-on faire sur la nature de (u_n)
- 2. Montrer que la suite géométrique (v_n) de premier terme 1 et de raison 3 vérifie la relation:

$v_{n+1} = 2 \cdot v_n + 3^n.$

Exercice 7304

On considère la suite (u_n) définie par: $u_0 = 3$; $u_{n+1} = 9 \times 2^n - u_n$

- 1. Déterminer la valeur des quatre premiers termes de la suite (u_n) .
- Conjecturer la nature de la suite (u_n) en justifiant votre

11. Suites arithmétiques et géométriques :

Exercice 7309

- 1. On considère la suite (u_n) arithmétique de premier terme 2 et de raison -3. Déterminer les quatre premiers termes de la suite (u_n) .
- 2. On considère la suite (v_n) géométrique de premier terme 54 et de raison $\frac{1}{3}$. Déterminer les quatre premiers termes de la suite (v_n) .

Exercice 5135

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique dont on connait deux termes:

$$u_4 = 12$$
 ; $u_{22} = -24$

Donner, en justifiant votre démarche, les éléments caractéristiques de cette suite.

Soit $(v_n)_{n\in\mathbb{N}}$ une suite géométrique dont on connait deux termes:

$$v_4 = 8$$
 ; $v_7 = \frac{64}{27}$

Donner, en justifiant votre démarche, les éléments caractéristiques de cette suite.

Exercice 6546

1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ arithmétique dont on connait les valeurs des deux termes suivants:

$$u_{10} = 5$$
 ; $u_{16} = 14$

Déterminer le premier terme u_0 et la raison de cette

2. On considère la suite $(v_n)_{n\in\mathbb{N}}$ géométrique dont on connait les valeurs des deux termes suivants:

$$v_4 = 96$$
 ; $v_7 = \frac{3}{2}$

Déterminer le premier terme v_0 et la raison de cette

Exercice réservé 2452

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique dont on a connaissance des deux termes suivants:

$$u_7 = 3$$
 et $u_{19} = 11$

Déterminer le premier terme et la raison de cette suite.

2. Soit $(v_n)_{n\in\mathbb{N}}$ une suite géométrique dont les termes de rangs 4 et 8 valent respectivement 3 et $\frac{16}{27}$

Déterminer les deux valeurs possibles de la raison. Donner la valeur du premier terme des deux suites.

12. Reconnaître une suite arithmétique et géométrique :

Exercice 5859

1. Justifier brièvement que les premiers termes de la suite (u_n) présentés ci-dessous peuvent être les termes d'une

suite aritmétique dont on précisera la raison:

$$u_0 = 2$$
 ; $u_1 = \frac{9}{2}$; $u_2 = 7$; $u_3 = \frac{19}{2}$

Justifier brièvement que les premiers termes de la suite (v_n) présentés ci-dessous peuvent être les termes d'une

suite géométrique dont on précisera la raison:
$$v_0=24$$
 ; $v_1=6$; $v_2=\frac{3}{2}$; $v_3=\frac{3}{8}$

3. Justifier brièvement que les premiers termes de la suite (w_n) ne représentent ni les premiers termes d'une suite arithmétique, ni les premiers termes d'une suite géométrique

$$w_0 = 1$$
 ; $w_1 = 2$; $w_2 = 4$; $w_3 = 16$

Exercice réservé 2402

Justifier si les suites présentées ci-dessous représentent potentiellement ou pas des suites arithmétiques ou géométrique:

1. La suite $(u_n)_{n\in\mathbb{N}}$ a pour premiers termes:

 $(3 ; 7 ; 11 ; 15 ; \dots)$

2. La suite $(v_n)_{n\in\mathbb{N}}$ a pour premiers termes:

 $(54 \ ; \ 6 \ ; \ \frac{2}{3} \ ; \ \frac{2}{27} \ ; \ldots)$

3. La suite $(w_n)_{n\in\mathbb{N}}$ a pour premiers termes:

 $(2 ; -6 ; 18 ; -54 ; \dots)$

4. La suite $(a_n)_{n\in\mathbb{N}}$ a pour premiers termes:

 $(3.25 ; 5 ; 6.75 ; 8.25 ; \dots)$



 $(2 ; 4 ; 8 ; 16 ; 36 ; \ldots)$

1. On considère la suite (u_n) définie par: $u_n = n^2 + n + 2$ pour tout entier $n \in \mathbb{N}$ 2. On considère la suite (v_n) définie par :

$$v_n = \frac{1}{n^2 + 2}$$
 pour tout entier $n \in \mathbb{N}$

Etablir que la suite (v_n) n'est pas une suite arithmé-

Etablir que la suite (u_n) n'est pas une suite géométrique.

13. Autres types de générations de suites :

Exercice 8405

- On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par: $u_0 = 2$; $u_{n+1} = 3 \cdot u_n - 2 \cdot n + 1$
- Déterminer les quatre premiers termes de la suite (u_n) .

Exercice 8045

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par:

$$u_0 = 1$$
 ; $u_{n+1} = \frac{4 \cdot u_n}{3 \cdot n - 2}$

Déterminer les cinq premiers termes de la suite (u_n)

Exercice 8404

On considère la suite (v_n) définie pour tout $n \in \mathbb{N}$ par : $v_0 = 1$; $v_{n+1} = \frac{3 \cdot v_n}{2 \cdot n - 3}$

$$v_0 = 1$$
 ; $v_{n+1} = \frac{3 \cdot v_n}{2 \cdot n - 3}$

Déterminer les six premiers termes de la suite (v_n)

Exercice 3020

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par la relation:

$$u_n = 7 \times 4^n - 2 \times 3^n$$

1. Montrer que la suite (u_n) vérifie la relation suivante:

$$u_{n+2} = 7 \cdot u_{n+1} - 12 \cdot u_n.$$

2. On considère la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par la relation:

$$v_n = u_{n+1} - 3 \cdot u_n$$

Montrer que la suite (v_n) est une suite géométrique. On donnera le premier terme et la raison.

Exercice 3019

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence et vérifiant les conditions:

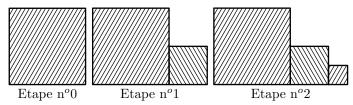
- $u_7 = 5$; $u_{10} = 11$; $u_{n+2} = 2 \cdot u_{n+1} u_n$ pour tout $n \in \mathbb{N}$
- 1. (a.) Justifier que la différence de deux termes consécutifs est constante.
 - (b.) Quelle est la nature de la suite (u_n) ?
- 2. (a.) Déterminer les éléments caractéristiques de (u_n) .
 - (b.) Exprimer le terme u_n en fonction du rang n.

Exercice 4628

On considère la construction d'une figure par étapes succes-

- A l'étape 0, la figure est constituée d'un carré de côté 4.
- On construit une série d'étapes en rajoutant un carré dont le côté mesure la moitié du carré précédemment

Voici les trois premières étapes de construction de cette figure:



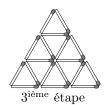
On note (u_n) l'aire totale de la figure construite à l'étape n^e . Ainsi, la suite (u_n) est définie pour tout entier naturel n et on a: $u_0 = 16$

- 1. Justifier que la suite $\binom{u_n}{\lambda}$ vérifie la relation de récurrence: $u_{n+1} = u_n + \frac{4}{2^{2n}}$
- 2. On admet l'existence de deux nombres réels α et β tels que la suite (u_n) admette pour expression explicite: $u_n = \alpha + \beta \cdot \left(\frac{1}{4}\right)^n$
 - Conjecturer les valeurs de α et β

14. Un peu plus loin :

Exercice 8047

On considère la construction ci-dessous effectuée d'étapes en étapes la construction de triangles équilatérals à l'aide d'allumettes:



Pour tout entier naturel n non-nul, on note u_n le nombre d'allumettes nécessaires à la construction de la figure à l'étape n. Ainsi, on a: $u_1 = 3$

1. Parmi les relations ci-dessous, laquelle vérifie les termes de la suite (u_n) :

$$(a) u_{n+1} = 3 \cdot u_n + 3$$

(a.)
$$u_{n+1} = 3 \cdot u_n + 3$$
 (b.) $u_{n+1} = u_n + 3 \cdot n + 3$

$$u_{n+1} = u_n + 6 \cdot r$$

$$u_{n+1} = u_n + 6 \cdot n$$
 d. $u_{n+1} = u_n - 3 \cdot n + 9$

2. Parmi les relations ci-dessous, laquelle vérifie les termes de la suite (u_n) :

(a.)
$$u_n = \frac{3}{2} \cdot n^2 + \frac{3}{2} \cdot n$$

(b.)
$$u_n = n^2 + 2 \cdot n$$

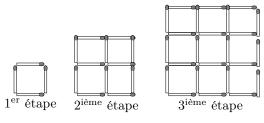
(c.)
$$u_n = \frac{3}{2} \cdot n^2 - \frac{1}{2} \cdot n + 1$$
 (d.) $u_n = n^2 + \frac{3}{2} \cdot n + \frac{1}{2}$

(d.)
$$u_n = n^2 + \frac{3}{2} \cdot n + \frac{1}{2}$$

3. Donner la valeur du terme u_6 .

Exercice 7244

On considère les constructions suivantes:

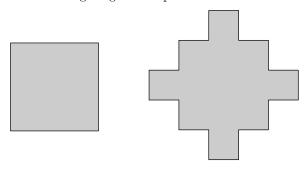


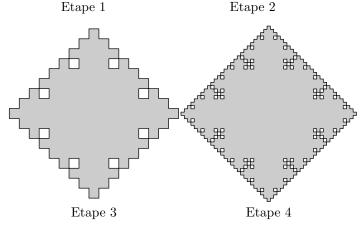
On note (u_n) la suite numérique définie sur \mathbb{N}^* où u_n représente le nombre d'allumettes nécessaire à la construction de la $n^{\text{ième}}$ étape.

Conjecturer une relation de récurrence entre un terme de la suite (u_n) et de son prédécesseur.

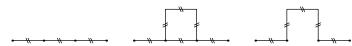
Exercice réservé 7310

Ci-dessous sont présentés les étapes récurrentes de la construction d'une figure géométrique





A chaque étape, chaque segment de la figure est divisée en 3 parties égales et sur le segment du milieu, on construit un carré dont on efface le segment du milieu:



Sachant que le carré de l'étape 1 a ses côtés qui mesurent 1, déterminer le périmètre de la figure obtenue à l'étape 4. On donnera la valeur exacte et la valeur approchée au centième.

15. Activité TICE 🛕 :

Exercice réservé 7556

On considère la suite (u_n) définie par:

$$u_0 = 1$$
 ; $u_{n+1} = 2 \cdot u_n + 3^n$ pour tout $n \in \mathbb{N}$.

- (a.) Vérifier la valeur des deux termes suivants: $u_1 = 3$; $u_2 = 9$
 - (b.) Déterminer la valeur du terme de rang 3 de la suite
- (a.) Compléter l'algorithme ci-dessous afin que la variable u prenne successivement les 20 premiers termes de la suite (u_n)

$$\begin{array}{c} u \,\leftarrow\, 1 \\ \text{Pour i allant de 0 à } \dots \\ \quad \quad u \,\leftarrow\, \dots \\ \text{Fin Pour} \end{array}$$

(b.) Saisir cet algorithme dans AlgoBox afin qu'il affiche les 20 premiers termes de la suite (u_n) . Quelle conjecture peut-on faire sur la nature de la suite (u_n) ?

Exercice réservé 7557 🧲 🖟 🎉

On considère la suite (u_n) définie par:

$$u_0 = 3$$
 ; $u_{n+1} = 9 \times 2^n - u_n$

- 1. (a.) Vérifier la valeur des deux termes suivants: $u_1 = 6$; $u_2 = 12$
 - (b.) Déterminer la valeur du terme de rang 3 de la suite
- 2. (a.) A l'aide d'une feuille de calcul, générer les 20 premiers termes de cette suite.
 - (b.) Quelle conjecture peut-on faire sur la nature de la suite (u_n)

Exercice réservé 7558 🧲 🖟 📜

On considère la suite (u_n) définie par:

$$u_0 = 1$$
 ; $u_{n+1} = \frac{(n+2) \cdot u_n + 1}{n+1}$ pour tout $n \in \mathbb{N}$

1. (a.) Vérifier la valeur des deux termes suivants:

$$u_1 = 3$$
 ; $u_2 = 5$

- (b.) Déterminer la valeur du terme de rang 3 de la suite
- (a.) A l'aide d'une feuille de calcul, générer les 20 premiers termes de cette suite.
 - (b.) Quelle conjecture peut-on faire sur la nature de la suite (u_n)

Exercice réservé 7559

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence et vérifiant les conditions:

 $u_0 = 5$; $u_1 = 11$; $u_{n+2} = 2 \cdot u_{n+1} - u_n$ pour tout $n \in \mathbb{N}$

- (a.) Vérifier la valeur des deux termes suivants: $u_2 = 17$; $u_3 = 23$
 - (b.) Déterminer la valeur du terme de rang 4 de la suite (u_n) .
- (a.) Compléter l'algorithme suivant afin que la variable a prenne au cours de l'exécution de l'algorithme les 20 premiers termes de la suite (u_n) :

$$\begin{array}{l} \mathbf{a} \leftarrow \mathbf{5} \\ \mathbf{b} \leftarrow \mathbf{a} \\ \mathbf{a} \leftarrow \mathbf{11} \\ \mathbf{Pour} \ \mathbf{i} \ \mathbf{allant} \ \mathbf{de} \ \mathbf{2} \ \mathbf{\hat{a}} \ \dots \\ \mathbf{c} \leftarrow \mathbf{a} \\ \mathbf{a} \leftarrow \dots \\ \mathbf{b} \leftarrow \mathbf{c} \\ \mathbf{Fin} \ \mathbf{Pour} \end{array}$$

(b.) Saisir cet algorithme dans AlgoBox afin qu'il affiche les 20 premiers termes de la suite (u_n) . Quelle conjecture peut-on faire sur la nature de la suite (u_n) ?

Exercice 7308

On considère les deux algorithmes ci-dessous:

Algorithme 1

$$\begin{array}{l} u \;\leftarrow\; 4 \\ \text{Pour i allant de 1 \^a} \\ 53 \\ \quad u \;\leftarrow\; u + 3 \\ \text{Fin Pour} \end{array}$$

Algorithme 2

$$\begin{array}{l} u \leftarrow 1 \\ \text{Pour i allant de 1 à 4} \\ \quad u \leftarrow 2 \times u + 1 \\ \text{Fin Pour} \end{array}$$

Pour chacun des algorithmes, donner la valeur contenue dans la variable u après l'exécution de l'algorithme.

Exercice 7285

On considère la suite (u_n) géométrique de premier terme de 2 et de raison 2:

Saisir l'algorithme ci-dessous.

$$\begin{array}{c} n \;\leftarrow\; 0 \\ u \;\leftarrow\; 2 \\ \text{Tant que u} < 1000 \\ u \;\leftarrow\; 2 \times u \\ n \;\leftarrow\; n+1 \\ \text{Fin Tant que} \end{array}$$

Interpréter la valeur de la variable n à la fin de l'exécution de l'algorithme.

2. Modifier l'algorithme pour connaitre le rang du premier terme supérieur à 5000.

Exercice 8357

On considère l'algorithme ci-dessous:

$$a \leftarrow 2$$
Pour i allant de 0 à 5
 $a \leftarrow a+3$
Fin

1. Afin de connaître la valeur de la variable a à la fin de l'exécution de cet algorithme, saisissez cet algorithme dans le langage Python:

Parmi les suites ci-dessous laquelle a été implétentée dans l'algorithme précédent:

a.
$$\begin{cases} u_0 = 3 \\ u_{n+1} = u_n + 2 \end{cases}$$
 b.
$$\begin{cases} u_0 = 3 \\ u_{n+1} = 2 \times u_n \end{cases}$$
 c.
$$\begin{cases} u_0 = 2 \\ u_{n+1} = u_n + 3 \end{cases}$$
 d.
$$\begin{cases} u_0 = 3 \\ u_{n+1} = 3 \times u_n \end{cases}$$

$$\oint u_0 = 3$$

$$u_{n+1} = 2 \times i$$

$$\begin{array}{c}
u_0 = 2 \\
u_{n+1} = u_n +
\end{array}$$

$$\left\{ \begin{array}{l}
 u_0 = 2 \\
 u_{n+1} = 3 \times u_n
 \end{array} \right.$$

Exercice 8358

On considère la suite (u_n) géométrique de premier terme 4 et de raison 2.

1. Parmi les algorithmes ci-dessous, lequel permet d'afficher le terme de rang 8 de la suite (u_n) :

a.
$$a \leftarrow 4$$
Pour i allant de 0 à 8
 $a \leftarrow a \times 2$
Fin Pour
Afficher a

b.
$$a \leftarrow 4$$
Pour i allant de 1 à 8
 $a \leftarrow a \times 2$
Fin Pour
Afficher a

c.
$$a \leftarrow 2$$
Pour i allant de 0 à 8
 $a \leftarrow a \times 4$
Fin Pour
Afficher a

d.
$$a \leftarrow 2$$
Pour i allant de 1 à 8
 $a \leftarrow a \times 4$
Fin Pour
Afficher a

Modifiez l'algorithme pour obtenir la valeur du terme u_{12}

255. Exercices non-classés:

Exercice 8356

On considère les deux suites (u_n) et (v_n) où:

- \bullet (u_n) une suite arithmétique de premier terme 3 et de
- \bullet (v_n) une suite géométrique de premier terme 1 et de

raison 1,3.

1. Compléter, en arrondissant les valeurs au centième près, le tableau ci-dessous avec les termes de ces deux suites :

n	u_n	v_n
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		

2. Placer les points $(n; u_n)$ et $(n; v_n)$ dans le repère cidessous:

