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Key to symbols in this book

●? This symbol means that you want to discuss a point with your teacher. If you are 

working on your own there are answers in the back of the book. It is important, 

however, that you have a go at answering the questions before looking up the 

answers if you are to understand the mathematics fully.

●  This symbol invites you to join in a discussion about proof. The answers to these 

questions are given in the back of the book.

!  This is a warning sign. It is used where a common mistake, misunderstanding or 

tricky point is being described.

This is the ICT icon. It indicates where you could use a graphic calculator or a 

computer. Graphical calculators and computers are not permitted in any of the 

examinations for the Cambridge International A & AS Level Mathematics 9709 

syllabus, however, so these activities are optional.

This symbol and a dotted line down the right-hand side of the page indicates 

material that you are likely to have met before. You need to be familiar with the 

material before you move on to develop it further.

This symbol and a dotted line down the right-hand side of the page indicates 

material which is beyond the syllabus for the unit but which is included for 

completeness.

vi



Introduction

This is the first of a series of books for the University of Cambridge International 

Examinations syllabus for Cambridge International A & AS Level Mathematics 

9709. The eight chapters of this book cover the pure mathematics in AS level. The 

series also contains a more advanced book for pure mathematics and one each 

for mechanics and statistics.

These books are based on the highly successful series for the Mathematics in 

Education and Industry (MEI) syllabus in the UK but they have been redesigned 

for Cambridge users; where appropriate new material has been written and the 

exercises contain many past Cambridge examination questions. An overview of 

the units making up the Cambridge International A & AS Level Mathematics 

9709 syllabus is given in the diagram on the next page.

Throughout the series the emphasis is on understanding the mathematics as 

well as routine calculations. The various exercises provide plenty of scope for 

practising basic techniques; they also contain many typical examination questions. 

An important feature of this series is the electronic support. There is an 

accompanying disc containing two types of Personal Tutor presentation: 

examination-style questions, in which the solutions are written out, step by step, 

with an accompanying verbal explanation, and test yourself questions; these are 

multiple-choice with explanations of the mistakes that lead to the wrong answers 

as well as full solutions for the correct ones. In addition, extensive online support 

is available via the MEI website, www.mei.org.uk.

The books are written on the assumption that students have covered and 

understood the work in the Cambridge IGCSE syllabus. However, some of 

the early material is designed to provide an overlap and this is designated 

‘Background’. There are also places where the books show how the ideas can be 

taken further or where fundamental underpinning work is explored and such 

work is marked as ‘Extension’.

The original MEI author team would like to thank Sophie Goldie who has carried 

out the extensive task of presenting their work in a suitable form for Cambridge 

International students and for her many original contributions. They would also 

like to thank Cambridge International Examinations for their detailed advice in 

preparing the books and for permission to use many past examination questions.

Roger Porkess

Series Editor

vii

www.mei.org.uk
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Algebra

Sherlock Holmes: ‘Now the skillful workman is very careful indeed 

… He will have nothing but the tools which may help him in doing 

his work, but of these he has a large assortment, and all in the most 

perfect order.’

A. Conan Doyle

Background algebra

Manipulating algebraic expressions

You will often wish to tidy up an expression, or to rearrange it so that it is easier 

to read its meaning. The following examples show you how to do this. You 

should practise the techniques for yourself on the questions in Exercise 1A.

Collecting terms

Very often you just need to collect like terms together, in this example those in x, 

those in y and those in z.

●? What are ‘like’ and ‘unlike’ terms?

EXAMPLE 1.1 Simplify the expression 2x + 4y − 5z − 5x − 9y + 2z + 4x − 7y + 8z.

SOLUTION

Expression = 2x + 4x − 5x + 4y – 9y − 7y + 2z + 8z − 5z 

   = 6x − 5x + 4y − 16y + 10z − 5z 

   = x − 12y + 5z 

Removing brackets

Sometimes you need to remove brackets before collecting like terms together.

Collect like
terms

Tidy up

This cannot be
simplified further

and so it is the answer.

1
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EXAMPLE 1.2 Simplify the expression 3(2x − 4y) − 4(x − 5y).

SOLUTION

Expression = 6x − 12y − 4x + 20y    

   = 6x − 4x + 20y − 12y 

   = 2x + 8y  

EXAMPLE 1.3 Simplify x(x + 2) − (x − 4).

SOLUTION

Expression = x2 + 2x − x + 4 

 = x2 + x + 4 

EXAMPLE 1.4 Simplify a(b + c) − ac.

SOLUTION

Expression = ab + ac − ac   

   = ab  

Factorisation

It is often possible to rewrite an expression as the product of two or more 

numbers or expressions, its factors. This usually involves using brackets and 

is called factorisation. Factorisation may make an expression easier to use and 

neater to write, or it may help you to interpret its meaning.

EXAMPLE 1.5 Factorise 12x − 18y.

SOLUTION

Expression = 6(2x − 3y) 

EXAMPLE 1.6 Factorise x2 − 2xy + 3xz.

SOLUTION

Expression = x(x − 2y + 3z) 

Open the brackets

Notice (–4) × (–5y) = +20y

Collect like terms

Answer

Open the brackets

Answer

Open the brackets

Answer

6 is a factor of both 12 and 18.

x is a factor of all three terms.
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Multiplication

Several of the previous examples have involved multiplication of variables: cases like

a × b = ab  and  x × x = x2.

In the next example the principles are the same but the expressions are not quite 

so simple.

EXAMPLE 1.7 Multiply  3p2qr × 4pq3 × 5qr2.

SOLUTION

Expression = 3 × 4 × 5 × p2 × p × q × q3 × q × r × r2 

 = 60 × p3 × q5 × r3

 = 60p3q5r3

Fractions

The rules for working with fractions in algebra are exactly the same as those used    

in arithmetic.

EXAMPLE 1.8 Simplify 
x y z
2

2
10 4

– + .

SOLUTION

As in arithmetic you start by finding the common denominator. For 2, 10 and 4 

this is 20.

Then you write each part as the equivalent fraction with 20 as its denominator,  

as follows.

Expression = +

= +

10
20

4
20

5
20

10 4 5
20

x y z

x y z

–

–

  

EXAMPLE 1.9 Simplify 
x
y

y
x

2 2

– .

SOLUTION

Expression =

=

x
xy

y
xy

x y
xy

3 3

3 3

–

–

 

You might well do this 
line in your head.

This line would often       
be left out.

The common 
denominator is xy.
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EXAMPLE 1.10 Simplify 
3
5

5
6

2x
y

yz
x

× . 

SOLUTION

Since the two parts of the expression are multiplied, terms may be cancelled top 

and bottom as in arithmetic. In this case 3, 5, x and y may all be cancelled.

Expression 

  

EXAMPLE 1.11 Simplify 
( – )

( – )
x
x x

1
4 1

3

.

SOLUTION

(x − 1) is a common factor of both top and bottom, so may be cancelled. 

However, x is not a factor of the top (the numerator), so may not be cancelled.

Expression = ( – )x
x
1

4

2
  

EXAMPLE 1.12 Simplify 
24 6

3 4 1
x
x

+
+( ).

SOLUTION 

When the numerator (top) and/or the denominator (bottom) are not factorised, 

first factorise them as much as possible. Then you can see whether there are any 

common factors which can be cancelled.

Expression = 
6 4 1
3 4 1
( )
( )

x
x

+
+

 = 2

EXERCISE 1A   1 Simplify the following expressions by collecting like terms.

(i) 8x + 3x + 4x − 6x

(ii) 3p + 3 + 5p − 7 − 7p − 9

(iii) 2k + 3m + 8n − 3k − 6m − 5n + 2k − m + n

(iv) 2a + 3b − 4c + 4a − 5b − 8c − 6a + 2b + 12c

(v) r − 2s − t + 2r − 5t − 6r − 7t − s + 5s − 2t + 4r

= ×

=

3
5

5
6

2

2

2

x
y

yz
x

xz
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2  Factorise the following expressions.  

(i) 4x + 8y (ii) 12a + 15b – 18c

(iii) 72f − 36g − 48h (iv) p2 − pq + pr

(v) 12k2 + 144km − 72kn

3 Simplify the following expressions, factorising the answers where possible.

(i) 8(3x + 2y) + 4(x + 3y) 

(ii) 2(3a − 4b + 5c) − 3(2a − 5b − c)

(iii) 6(2p − 3q + 4r) − 5(2p − 6q − 3r) − 3(p − 4q + 2r)

(iv) 4(l + w + h) + 3(2l − w − 2h) + 5w 

(v) 5u − 6(w − v) + 2(3u + 4w − v) − 11u

4 Simplify the following expressions, factorising the answers where possible.

(i) a(b + c) + a(b − c) (ii) k(m + n) − m(k + n)

(iii) p(2q + r + 3s) − pr − s(3p + q) (iv) x(x − 2) − x(x − 6) + 8

(v) x(x − 1) + 2(x − 1) − x(x + 1)

5 Perform the following multiplications, simplifying your answers.

(i) 2xy × 3x2y (ii) 5a2bc3 × 2ab2 × 3c

(iii) km × mn × nk (iv) 3pq2r × 6p2qr × 9pqr2

(v) rs × 2st × 3tu × 4ur

6 Simplify the following fractions as much as possible.

(i) 
ab
ac

 (ii) 2
4
e
f

 (iii) 
x
x

2

5

(iv) 4
2

2a b
ab

 (v) 
6
3

2 3

3 3 2

p q r
p q r

 

7 Simplify the following as much as possible.

(i) a
b

b
c

c
a

× ×  (ii) 
3
2

8
3

5
4

x
y

y
z

z
x

× ×  (iii) 
p
q

q
p

2 2

×  

(iv) 
2
16

4
4

32
12

2 3

3

fg
h

gh
f h

f h
f

× ×  (v) kmn
n

k m
k m3

6
23

2 3

3×   

8 Write the following as single fractions.

(i) 
x x
2 3

+  (ii) 2
5 3

3
4

x x x– +  (iii) 
3
8

2
12

5
24

z z z+ −  

(iv) 
2
3 4
x x−  (v) 

y y y
2

5
8

4
5

– +

9 Write the following as single fractions.

(i) 
3 5
x x

+  (ii) 1 1
x y

+  (iii) 4
x

x
y

+

(iv) 
p
q

q
p

+  (v) 1 1 1
a b c

– +
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10  Write the following as single fractions.

(i) 
x x+ +1

4
1

2
–  (ii) 2

3
1

5
x x– –  (iii) 

3 5
4

7
6

x x– –+  

(iv) 
3 2 1

5
7 2

2
( ) – ( – )x x+  (v) 4 1

8
7 3

12
x x+ + –

11 Simplify the following expressions.

(i) 
x
x

+
+

3
2 6

 (ii) 6 2 1
3 2 1

2

5
( )
( )

x
x

+
+

 (iii) 
2 3
8 3

4

2

x y
x y
( – )
( – )

(iv) 
6 12

2
x
x

–
–  (v) 

( )3 2
6 6 4

2 4x
x

x
x

+ × +

Linear equations

●? What is a variable?

You will often need to find the value of the variable in an expression in a 

particular case, as in the following example.

EXAMPLE 1.13 A polygon is a closed figure whose sides are straight lines. Figure 1.1 shows a     

seven-sided polygon (a heptagon).

An expression for S °, the sum of the angles of a polygon with n sides, is

S = 180(n − 2).

●? How is this expression obtained?

 Try dividing a polygon into triangles, starting from one vertex.

Find the number of sides in a polygon with an angle sum of  (i) 180° (ii) 1080°.

Figure 1.1
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SOLUTION

(i) Substituting 180 for S gives  180 = 180(n − 2) 

 Dividing both sides by 180 ⇒     1 = n − 2

 Adding 2 to both sides ⇒     3 = n

 The polygon has three sides: it is a triangle.

(ii) Substituting 1080 for S gives  1080 = 180(n − 2)

 Dividing both sides by 180 ⇒       6 = n − 2

 Adding 2 to both sides ⇒       8 = n

 The polygon has eight sides: it is an octagon.

Example 1.13 illustrates the process of solving an equation. An equation is formed 

when an expression, in this case 180(n − 2), is set equal to a value, in this case 180 or 
1080, or to another expression. Solving means finding the value(s) of the variable(s) 
in the equation.

Since both sides of an equation are equal, you may do what you wish to an 

equation provided that you do exactly the same thing to both sides. If there is 

only one variable involved (like n in the above examples), you aim to get that 

on one side of the equation, and everything else on the other. The two examples 

which follow illustrate this.

In both of these examples the working is given in full, step by step. In practice 

you would expect to omit some of these lines by tidying up as you went along.

●?  !  Look at the statement 5(x – 1) = 5x – 5.

 What happens when you try to solve it as an equation?

This is an identity and not an equation. It is true for all values of x.

For example, try x = 11: 5(x − 1) = 5 × (11 − 1) = 50; 5x − 5 = 55 − 5 = 50 ✓,

or try x = 46: 5(x − 1) = 5 × (46 − 1) = 225; 5x − 5 = 230 − 5 = 225 ✓,

or try x = anything else and it will still be true.

To distinguish an identity from an equation, the symbol ≡  is sometimes used.

Thus 5(x − 1) ≡ 5x − 5.

This is an equation 
which can be 

solved to find n.
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EXAMPLE 1.14 Solve the equation 5(x − 3) = 2(x + 6).

SOLUTION

Open the brackets ⇒         5x − 15 = 2x + 12

Subtract 2x from both sides ⇒ 5x – 2x − 15 = 2x − 2x + 12

Tidy up ⇒         3x − 15 = 12

Add 15 to both sides ⇒ 3x − 15 + 15 = 12 + 15

Tidy up ⇒                 3x = 27

Divide both sides by 3 ⇒                  3
3

27
3

x =

 ⇒                    x = 9

CHECK

When the answer is substituted in the original equation both sides should come 

out to be equal. If they are different, you have made a mistake.

Left-hand side Right-hand side

5(x − 3) 2(x + 6)

5(9 − 3) 2(9 + 6)

5 × 6 2 × 15

30 30      (as required).

EXAMPLE 1.15 Solve the equation 
1
2(x + 6) = x + 1

3(2x − 5).

SOLUTION

Start by clearing the fractions. Since the numbers 2 and 3 appear on the bottom 

line, multiply through by 6 which cancels both of them.

Multiply both sides by 6 ⇒ 6 × 1
2
(x + 6) = 6 × x + 6 × 1

3(2x − 5)

Tidy up ⇒ 3(x + 6) = 6x + 2(2x − 5)

Open the brackets ⇒ 3x + 18 = 6x + 4x − 10

Subtract 6x, 4x, and 18

from both sides ⇒ 3x − 6x − 4x = − 10 − 18

Tidy up ⇒ −7x = −28

Divide both sides by (–7) ⇒ –
–

–
–

7
7

28
7

x =

 ⇒ x = 4

CHECK

Substituting x = 4  in  1
2(x + 6) = x + 1

3(2x – 5)  gives:

Left-hand side Right-hand side

 
1
2(4 + 6) 4 + 1

3(8 – 5)

 
10
2  4 + 3

3

 5 5  (as required).
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EXERCISE 1B   1 Solve the following equations.

(i)  5a − 32 = 68

(ii)  4b − 6 = 3b + 2

(iii)  2c + 12 = 5c + 12

(iv)  5(2d + 8) = 2(3d + 24)

(v)  3(2e − 1) = 6(e + 2) + 3e

(vi)  7(2 − f ) – 3(f − 4) = 10f − 4

(vii)  5g + 2(g − 9) = 3(2g − 5) + 11

(viii) 3(2h − 6) − 6(h + 5) = 2(4h − 4) − 10(h + 4)

(ix) 1
2k + 1

4k = 36

(x) 1
2(l − 5) + l = 11

(xi) 1
2 (3m + 5) + 11

2 (2m − 1) = 51
2

(xii) n + 1
3  (n + 1) + 1

4(n + 2) = 5
6

2 The largest angle of a triangle is six times as big as the smallest. The third angle 

is 75°.

(i) Write this information in the form of an equation for a, the size in degrees 

of the smallest angle.

(ii) Solve the equation and so find the sizes of the three angles.

3 Miriam and Saloma are twins and their sister Rohana is 2 years older  

than them.  

The total of their ages is 32 years.

(i) Write this information in the form of an equation for r, Rohana’s age 

in years.

(ii) What are the ages of the three girls?

4 The length, d m, of a rectangular field is 40 m greater than the width.   

The perimeter of the field is 400 m.

(i) Write this information in the form of an equation for d.

(ii) Solve the equation and so find the area of the field.

5 Yash can buy three pencils and have 49c change, or he can buy five pencils and 

have 15c change.

(i) Write this information as an equation for x, the cost in cents of one pencil.

(ii) How much money did Yash have to start with?



A
lg

e
b

ra

10

P1 

1

6  In a multiple-choice examination of 25 questions, four marks are given for 

each correct answer and two marks are deducted for each wrong answer.  

One mark is deducted for any question which is not attempted.  

A candidate attempts q questions and gets c correct.

(i) Write down an expression for the candidate’s total mark in terms of q and c.

(ii) James attempts 22 questions and scores 55 marks. Write down and solve 

an equation for the number of questions which James gets right.

7 Joe buys 18 kg of potatoes. Some of these are old potatoes at 22c per kilogram, 

the rest are new ones at 36c per kilogram.

(i) Denoting the mass of old potatoes he buys by m kg, write down an 

expression for the total cost of Joe’s potatoes.

(ii) Joe pays with a $5 note and receives 20c change. What mass of new 

potatoes does he buy?

8 In 18 years’ time Hussein will be five times as old as he was 2 years ago.

(i) Write this information in the form of an equation involving Hussein’s 

present age, a years.

(ii) How old is Hussein now?

Changing the subject of a formula

The area of a trapezium is given by

A = 1
2(a + b)h

where a and b are the lengths of the parallel sides and h is the distance between 

them (see figure 1.2). An equation like this is often called a formula.

The variable A is called the subject of this formula because it only appears once 

on its own on the left-hand side. You often need to make one of the other 

variables the subject of a formula. In that case, the steps involved are just the 

same as those in solving an equation, as the following examples show.

b

a

h

Figure 1.2
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EXAMPLE 1.16 Make a the subject in A = 1
2 (a + b)h.

SOLUTION

It is usually easiest if you start by arranging the equation so that the variable you 

want to be its subject is on the left-hand side.

	 	 1
2(a + b)h = A 

Multiply both sides by 2 ⇒ (a + b)h = 2A

Divide both sides by h ⇒ a + b = 2A
h

Subtract b from both sides ⇒ a = 2A
h

 − b

EXAMPLE 1.17 Make T the subject in the simple interest formula I = PRT
100

.

SOLUTION

Arrange with T on the left-hand side     PRT
100

 = I

Multiply both sides by 100 ⇒ PRT = 100I

Divide both sides by P and R ⇒ T = 100I
PR

EXAMPLE 1.18 Make x the subject in the formula v = ω a x2 2– . (This formula gives the speed 

of an oscillating point.)  

SOLUTION

Square both sides ⇒ v2 = ω2(a2 − x2)

Divide both sides by ω 2 ⇒ v2

2ω
 = a2 − x2

Add x2 to both sides ⇒ v2

2ω
 + x2 = a2

Subtract v2

2ω
 from both sides ⇒ x2 = a2 − v

2

2ω
 

Take the square root of both sides ⇒ x = ± a v2
2

2–
ω

   

EXAMPLE 1.19 Make m the subject of the formula mv = I + mu. (This formula gives the 

momentum after an impulse.)

SOLUTION

Collect terms in m on the left-hand side 

and terms without m on the other. ⇒ mv − mu = I

Factorise the left-hand side ⇒ m(v − u) = I

Divide both sides by (v − u) ⇒                   m I
v u

=
–
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EXERCISE 1C  1 Make (i) a  (ii) t the subject in v = u + at.

2 Make h the subject in V = l wh.

3 Make r the subject in A = πr2.

4 Make (i) s (ii) u the subject in v2 − u2 = 2as.

5 Make h the subject in A = 2πrh + 2πr2.

6 Make a the subject in s = ut + 1
2at2.

7 Make b the subject in h = a b2 2+ .

8 Make g the subject in T = 2π 
l
g .

9 Make m the subject in E = mgh + 1
2mv2.

10 Make R the subject in 1 1 1

1 2R R R
= + .

11 Make h the subject in bh = 2A − ah.

12 Make u the subject in f = uv
u v+ .

13 Make d the subject in u2 − du + fd = 0.

14 Make V the subject in p1VM = mRT + p2VM.

●? All the formulae in Exercise 1C refer to real situations. Can you recognise them?

Quadratic equations

EXAMPLE 1.20 The length of a rectangular field is 40 m greater than its width, and its area is 
6000 m2. Form an equation involving the length, x m, of the field.

SOLUTION

Since the length of the field is 40 m greater than the width, 

the width in m must be x − 40 

and the area in m2 is x(x − 40). 

So the required equation is x(x − 40) = 6000

or                     x2 − 40x − 6000 = 0.   
x

x – 40

Figure 1.3 
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This equation, involving terms in x2 and x as well as a constant term (i.e. a 

number, in this case 6000), is an example of a quadratic equation. This is in 

contrast to a linear equation. A linear equation in the variable x involves only 

terms in x and constant terms.

It is usual to write a quadratic equation with the right-hand side equal to zero. 

To solve it, you first factorise the left-hand side if possible, and this requires a 

particular technique.

Quadratic factorisation

EXAMPLE 1.21 Factorise xa + xb + ya + yb. 

SOLUTION

xa + xb + ya + yb = x (a + b) + y (a + b)  

 = (x + y)(a + b)

The expression is now in the form of two factors, (x + y) and (a + b), so this is the 
answer.

You can see this result in terms of the area of the rectangle in figure 1.4. This can 

be written as the product of its length (x + y) and its width (a + b), or as the 

sum of the areas of the four smaller rectangles, xa, xb, ya and yb.

The same pattern is used for quadratic factorisation, but first you need to split 

the middle term into two parts. This gives you four terms, which correspond to 

the areas of the four regions in a diagram like figure 1.4.

Notice (a + b) is a 
common factor.

x

a xa

b xb

ya

yb

y

Figure 1.4
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EXAMPLE 1.22 Factorise x2 + 7x + 12. 

SOLUTION

Splitting the middle term, 7x, as 4x + 3x you have

x2 + 7x + 12 = x2 + 4x + 3x + 12

                = x(x + 4) + 3(x + 4)

                = (x + 3)(x + 4).

How do you know to split the middle term, 7x, into 4x + 3x, rather than say 

5x + 2x  or 9x − 2x?

The numbers 4 and 3 can be added to give 7 (the middle coefficient) and 
multiplied to give 12 (the constant term), so these are the numbers chosen.

  x2 + 7x + 12  

EXAMPLE 1.23 Factorise x2 − 2x − 24.

SOLUTION

First you look for two numbers that can be added to give −2 and multiplied to 
give –24: 

−6 + 4 = −2    −6 × (+4) = −24.

The numbers are –6 and +4 and so the middle term, –2x, is split into –6x + 4x.

x2 – 2x – 24 = x2 − 6x + 4x − 24 

 = x(x − 6) + 4(x − 6)

 = (x + 4)(x − 6).

x2

4x

3x

12

x 3

x

4

Figure 1.5

The coefficient of x is 7. The constant term is 12.

4 + 3 = 7 4 × 3 = 12
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This example raises a number of important points.

1 It makes no difference if you write + 4x − 6x instead of − 6x + 4x. In that case 
the factorisation reads:

x2 − 2x − 24 = x2 + 4x − 6x − 24

 = x(x + 4) − 6(x + 4)

 = (x − 6)(x + 4)  (clearly the same answer).

2 There are other methods of quadratic factorisation. If you have already learned 
another way, and consistently get your answers right, then continue to use it. 
This method has one major advantage: it is self-checking. In the last line but 

one of the solution to the example, you will see that (x + 4) appears twice. If at 

this point the contents of the two brackets are different, for example (x + 4) and 

(x − 4), then something is wrong. You may have chosen the wrong numbers, or 
made a careless mistake, or perhaps the expression cannot be factorised. There 
is no point in proceeding until you have sorted out why they are different.

3 You may check your final answer by multiplying it out to get back to the 

original expression. There are two common ways of setting this out.

(i) Long multiplication

    

  x + 4              

  x − 6

 x2 + 4x        

  −6x − 24   

 x2 − 2x − 24  (as required)

(ii) Multiplying term by term

        = x2 − 2x − 24  (as required)

You would not expect to draw the lines and arrows in your answers. They 
have been put in to help you understand where the terms have come from.

EXAMPLE 1.24 Factorise x2 − 20x + 100.

SOLUTION

x2 − 20x + 100 = x2 − 10x − 10x + 100 

 = x(x − 10) − 10(x − 10)

 = (x − 10)(x − 10)

 = (x − 10)2

x 2 column x  column Numbers
column

This is 
x (x  + 4).

This is –6(x  + 4).

(x + 4)(x – 6) = x2 – 6x + 4x – 24

Notice:
(–10) + (–10) = –20 

(–10) × (–10) = +100
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Note

The expression in Example 1.24 was a perfect square. It is helpful to be able to rec-

ognise the form of such expressions.

(x + a)2 = x2 + 2ax + a2   (in this case a = 10)

(x − a)2 = x2 − 2ax + a2

EXAMPLE 1.25  Factorise x2 − 49.

SOLUTION

x2 − 49 can be written as x2 + 0x − 49. 

x2 + 0x − 49 = x2 − 7x + 7x − 49

 = x(x − 7) + 7(x − 7)

 = (x + 7)(x − 7)  

Note

The expression in Example 1.25 was an example of the difference of two squares 

which may be written in more general form as

a2 − b2 = (a + b)(a − b).

●? What would help you to remember the general results from Examples 1.24 

and 1.25?

The previous examples have all started with the term x2, that is the coefficient of 
x2 has been 1. This is not the case in the next example.

EXAMPLE 1.26 Factorise 6x2 + x − 12.

SOLUTION

The technique for finding how to split the middle term is now adjusted. Start by 
multiplying the two outside numbers together:

6 × (−12) = −72.

Now look for two numbers which add to give +1 (the coefficient of x) and 
multiply to give −72 (the number found above).

(+9) + (−8) = +1                    (+9) × (−8) = –72

Splitting the middle term gives

6x2 + 9x − 8x − 12 = 3x(2x + 3) − 4(2x + 3)

 = (3x − 4)(2x + 3)  

Notice this is
x2 – 72.

–7 + 7 = 0
(–7) × 7 = –49

3x is a factor of both 
6x2 and 9x.

–4 is a factor of both 
–8x and –12.
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Note

The method used in the earlier examples is really the same as this. It is just that in 

those cases the coefficient of x2 was 1 and so multiplying the constant term by it had 

no effect.

!  Before starting the procedure for factorising a quadratic, you should always check 

that the terms do not have a common factor as for example in 

2x2 − 8x + 6.

 This can be written as 2(x2 − 4x + 3) and factorised to give 2(x − 3)(x − 1).

Solving quadratic equations

It is a simple matter to solve a quadratic equation once the quadratic expression 

has been factorised. Since the product of the two factors is zero, it follows that 

one or other of them must equal zero, and this gives the solution.

EXAMPLE 1.27 Solve x2 − 40x − 6000 = 0.

SOLUTION

 x2 − 40x − 6000 = x2 − 100x + 60x − 6000

  = x(x − 100) + 60(x − 100)

  = (x + 60)(x − 100)

⇒ (x + 60)(x − 100) = 0

⇒ either x + 60 = 0  ⇒  x = −60

⇒ or x − 100 = 0  ⇒  x = 100

The solution is x = −60 or 100. 

Note

The solution of the equation in the example is x = –60 or 100.

The roots of the equation are the values of x which satisfy the equation, in this case 

one root is x = –60 and the other root is x = 100.

Sometimes an equation can be rewritten as a quadratic and then solved.

EXAMPLE 1.28 Solve x4 – 13x2 + 36 = 0

SOLUTION

This is a quartic equation (its highest power of x is 4) and it isn’t easy to factorise 

this directly. However, you can rewrite the equation as a quadratic in x2.

●?   Look back to page 12. 

What is the length of the field?
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Let  y = x2

 x4 − 13x2 + 36 = 0

⇒ (x2)2 − 13x2 + 36 = 0

⇒ y2 − 13y + 36 = 0 

Now you have a quadratic equation which you can factorise.

 (y − 4)(y − 9) = 0 

So y = 4 or y = 9

Since y = x2  then x2 = 4 ⇒ x = ±2

  or x2 = 9 ⇒ x = ±3

You may have to do some work rearranging the equation before you can solve it.

EXAMPLE 1.29 Find the real roots of the equation x
x

2
2

2 8− = .

SOLUTION

You need to rearrange the equation before you can solve it.

 x
x

2
2

2 8− =

Multiply by x2: x4 − 2x2 = 8 

Rearrange: x4 − 2x2 − 8 = 0 

This is a quadratic in x2. You can factorise it directly, without substituting in for x2.

⇒ (x2 + 2)(x2 − 4) = 0

So x2 = −2 which has no real solutions. 

or x2 = 4 ⇒ x = ±2

EXERCISE 1D 1  Factorise the following expressions.

(i) al + am + bl + bm (ii) px + py − qx − qy

(iii) ur − vr + us − vs (iv) m2 + mn + pm + pn

(v) x2 − 3x + 2x − 6 (vi) y2 + 3y + 7y + 21

(vii) z 2 − 5z + 5z − 25 (viii) q2 − 3q − 3q + 9

(ix) 2x2 + 2x + 3x + 3 (x) 6v2 + 3v − 20v − 10

2 Multiply out the following expressions and collect like terms.

(i) (a + 2)(a + 3) (ii) (b + 5)(b + 7)

(iii) (c − 4)(c − 2) (iv) (d − 5)(d − 4)

(v) (e + 6)(e − 1) (vi) (g − 3)(g + 3)

(vii) (h + 5)2 (viii) (2i − 3)2

(ix) (a + b)(c + d) (x) (x + y)(x − y)

You can replace 
x2 with y to get a 

quadratic equation.

Don’t stop here. 
You are asked to find x, not y.

Remember the 
negative square root.

So this quartic equation  
only has two real roots. You 

can find out more about roots 
which are not real in P3.
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3   Factorise the following quadratic expressions.

(i) x2 + 6x + 8 (ii) x2 − 6x + 8

(iii) y2 + 9y + 20 (iv) r2 + 2r − 15

(v) r2 − 2r − 15 (vi) s2 − 4s + 4

(vii) x2 − 5x − 6 (viii) x2 + 2x + 1 

(ix) a2 − 9 (x) (x + 3)2 − 9

4 Factorise the following expressions.

(i) 2x2 + 5x + 2 (ii) 2x2 − 5x + 2

(iii) 5x2 + 11x + 2 (iv) 5x2 − 11x + 2

(v) 2x2 + 14x + 24 (vi) 4x2 − 49

(vii) 6x2 − 5x − 6 (viii) 9x2 − 6x + 1

(ix) t1
2 − t2

2 (x) 2x2 − 11xy + 5y2

5 Solve the following equations.

(i) x2 − 11x + 24 = 0 (ii) x2 + 11x + 24 = 0

(iii) x2 − 11x + 18 = 0 (iv) x2 − 6x + 9 = 0

(v) x2 − 64 = 0

6 Solve the following equations.

(i) 3x2 − 5x + 2 = 0 (ii) 3x2 + 5x + 2 = 0

(iii) 3x2 − 5x − 2 = 0 (iv) 25x2 − 16 = 0 

(v) 9x2 − 12x + 4 = 0 

7 Solve the following equations.

(i) x2 − x = 20 (ii) 3 5
3

4
2x x+ =

(iii) x2 + 4 = 4x (iv) 2 1 15x x+ =

(v) x x− =1 6  (vi) 3 8 14x x+ =

8 Solve the following equations.

(i) x4 – 5x2 + 4 = 0 (ii) x4 – 10x2 + 9 = 0

(iii) 9x4 – 13x2 + 4 = 0 (iv) 4x4 – 25x2 + 36 = 0

(v) 25x4 – 4x2 = 0 (vi) x x− + =6 5 0

(vii) x6 – 9x3 + 8 = 0 (viii) x x− − =6 0

9 Find the real roots of the following equations.

(i) x
x

2
2

1 2+ =  (ii) x
x

2
2

1 12= +

(iii) x
x

2
2

6 27− =  (iv) 1 1 20 0
2 4

+ − =
x x

(v) 
9 4 13
4 2x x
+ =  (vi) x

x
3

3
2 3+ =

(vii) x
x

+ =8 6  (viii) 2 3 7+ =
x x
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10  Find the real roots of the equation 9 8 1
4 2x x
+ = .

11 The length of a rectangular field is 30 m greater than its width, w metres.

(i) Write down an expression for the area A m2 of the field, in terms of w.

(ii) The area of the field is 8800 m2. Find its width and perimeter.

12 A cylindrical tin of height h cm and radius r cm, has surface area, including 

its top and bottom, A cm2.

(i) Write down an expression for A in terms of r, h and π.

(ii) A tin of height 6 cm has surface area 54π cm2. What is the radius of the tin?

(iii) Another tin has the same diameter as height. Its surface area is 150 π cm2. 

What is its radius?

13 When the first n positive integers are added together, their sum is given by

  1
2n(n + 1).

(i) Demonstrate that this result holds for the case n = 5.

(ii) Find the value of n for which the sum is 105.

(iii) What is the smallest value of n for which the sum exceeds 1000?

14 The shortest side AB of a right-angled triangle is x cm long. The side BC is 

1 cm longer than AB and the hypotenuse, AC, is 29 cm long. 

Form an equation for x and solve it to find the lengths of the three sides of 

the triangle.

Equations that cannot be factorised

The method of quadratic factorisation is fine so long as the quadratic expression 

can be factorised, but not all of them can. In the case of x2 − 6x + 2, for example, 

it is not possible to find two whole numbers which add to give −6 and multiply to 

give +2.

There are other techniques available for such situations, as you will see in the 

next few pages.

Graphical solution

If an equation has a solution, you can always find an approximate value for it by 

drawing a graph. In the case of

x2 − 6x + 2 = 0

you draw the graph of

y = x2 − 6x + 2

and find where it cuts the x axis.



E
q

u
a
tio

n
s th

a
t c

a
n

n
o

t b
e
 fa

c
to

rise
d

21

P1 

1

x 0 1 2 3 4 5 6

x2 0 1 4 9 16 25 36

−6x 0 −6 −12 −18 −24 −30 −36

+2 +2 +2 +2 +2 +2 +2 +2

y +2 −3 −6 −7 −6 −3 +2

From figure 1.6, x is between 0.3 and 0.4 so approximately 0.35, or between 5.6 

and 5.7 so approximately 5.65.

Clearly the accuracy of the answer is dependent on the scale of the graph but, 

however large a scale you use, your answer will never be completely accurate.

Completing the square

If a quadratic equation has a solution, this method will give it accurately.  It 

involves adjusting the left-hand side of the equation to make it a perfect square. 

The steps involved are shown in the following example.

0
1 2 3 4 5 6

1

–1

–2

–3

–4

–5

–6

–7

2

y

x

Figure 1.6

Between  
0.3 and 0.4

Between 
5.6 and 5.7
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EXAMPLE 1.30 Solve the equation x2 − 6x + 2 = 0 by completing the square.

SOLUTION

Subtract the constant term from both sides of the equation:

⇒  x2 − 6x        = −2

Take the coefficient of x : −6 

Halve it:   −3 

Square the answer:  +9

Add it to both sides of the equation:

⇒  x2 − 6x + 9 = −2 + 9

Factorise the left-hand side. It will be found to be a perfect square:

⇒ (x − 3)2 = 7

Take the square root of both sides:

⇒ x − 3 = ± 7

⇒   x = 3 ± 7      

Using your calculator to find the value of 7

⇒ x = 5.646 or 0.354, to 3 decimal places.   

The graphs of quadratic functions

Look at the curve in figure 1.7. It is the graph of y = x2 − 4x + 5 and it has the 

characteristic shape of a quadratic; it is a parabola.

Notice that:

●● it has a minimum point  

(or vertex) at (2, 1)

●● ●it has a line of symmetry, x = 2.

It is possible to find the vertex 

and the line of symmetry without 

plotting the points by using the 

technique of completing the 

square.

●?   Explain why this makes the      
         left-hand side a perfect square.

}

This is an exact answer.

This is an approximate answer.

0 1 2 3 4–1

1

2

3

4

5

y

x

x = 2

(2, 1)

Figure 1.7



T
h

e
 g

ra
p

h
s o

f q
u

a
d

ra
tic

 fu
n

c
tio

n
s

23

P1 

1

Rewrite the expression with the constant term moved to the right

x2 − 4x        + 5.

Take the coefficient of x:   −4

Divide it by 2:  −2

Square the answer:   +4

Add this to the left-hand part and compensate by subtracting it from the constant 

term on the right

x2 – 4x + 4 + 5 – 4.    

This can now be written as (x − 2)2 + 1.

EXAMPLE 1.31 Write x2 + 5x + 4 in completed square form.

Hence state the equation of the line of symmetry and the co-ordinates of the 

vertex of the curve y = x2 + 5x + 4.

SOLUTION

x2 + 5x + 4

x2 + 5x + 6.25 + 4 − 6.25   

(x + 2.5)2 − 2.25  (This is the completed square form.)

The line of symmetry is x + 2.5 = 0, or x = −2.5.

The vertex is (−2.5, −2.25).

This is the completed 
square form.

The minimum value is 1, 
so the vertex is (2, 1).The line of symmetry is 

x – 2 = 0  or x = 2.

5 ÷ 2 = 2.5; 2.52 = 6.25

0–1 1 2 x–2–3–4–5

–1

–2

–3

1

2
x = –2.5

y

Figure 1.8

Vertex
(–2.5, –2.25)

Line of symmetry
x = –2.5
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!  For this method, the coefficient of x2 must be 1. To use it on, say, 2x2 + 6x + 5, you 

must write it as 2(x2 + 3x + 2.5) and then work with x2 + 3x + 2.5. In completed 

square form, it is 2(x + 1.5)2 + 0.5. Similarly treat −x2 + 6x + 5 as −1(x2 − 6x − 5) 

and work with x2 − 6x − 5. In completed square form it is −1(x − 3)2 + 14.

Completing the square is an important technique. Knowing the symmetry and 

least (or greatest) value of a quadratic function will often give you valuable 

information about the situation it is modelling.

EXERCISE 1E    1 For each of the following equations:

(a) write it in completed square form

(b) hence write down the equation of the line of symmetry and the co-ordinates 

of the vertex

(c) sketch the curve.

(i) y = x 2 + 4x + 9 (ii)  y = x 2 − 4x + 9

(iii) y = x 2 + 4x + 3 (iv)  y = x 2 − 4x + 3

(v) y = x2 + 6x − 1 (vi) y = x2 − 10x

(vii) y = x 2 + x + 2 (viii) y = x 2 − 3x − 7

(ix) y = x 2 − 1
2x + 1 (x) y = x 2 + 0.1x + 0.03

2 Write the following as quadratic expressions in descending powers of x.

(i) (x + 2)2 − 3 (ii) (x + 4)2 − 4

(iii) (x − 1)2 + 2 (iv) (x − 10)2 + 12

(v) x −( ) +1
2

3
4

2
 (vi) (x + 0.1)2 + 0.99

3 Write the following in completed square form.

(i) 2x 2 + 4x + 6 (ii) 3x 2 − 18x – 27

(iii) −x 2 − 2x + 5 (iv) −2x 2 − 2x − 2

(v) 5x 2 − 10x + 7 (vi) 4x 2 − 4x − 4

(vii) −3x 2 − 12x  (viii) 8x 2 + 24x − 2
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4      The curves below all have equations of the form y = x2 + bx + c. 

In each case find the values of b and c.

 

5 Solve the following equations by completing the square.

(i) x 2 − 6x + 3 = 0 (ii) x 2 − 8x – 1 = 0

(iii) x 2 − 3x + 1 = 0 (iv) 2x 2 − 6x + 1 = 0

(v) 5x 2 + 4x − 2 = 0

The quadratic formula

Completing the square is a powerful method because it can be used on any 

quadratic equation. However it is seldom used to solve an equation in practice 

because it can be generalised to give a formula which is used instead.  The 

derivation of this follows exactly the same steps.

To solve a general quadratic equation ax2 + bx + c = 0 by completing the square:

First divide both sides by a: ⇒  x bx
a

c
a

2 0+ + = .   

Subtract the constant term from both sides of the equation:

⇒  x bx
a

c
a

2 + = −

y

x

(3, 1)

(i) y

x

(–1, –1)

(ii)

y

x(4, 0)

(iii) y

x

(–3, 2)

(iv)



A
lg

e
b

ra

26

P1 

1

Take the coefficient of x : +b
a  

Halve it: + b
a2

Square the answer: + b
a

2

24
 

Add it to both sides of the equation:

⇒ x bx
a

b
a

b
a

c
a

2
2

2

2

24 4
+ + = –

Factorise the left-hand side and tidy up the right-hand side:

⇒ x b
a

b ac
a

+( ) =
2

4
4

2 2

2
–

Take the square root of both sides:

⇒ x b
a

b ac
a

+ = ±
2

4
2

2 –    

⇒ x b b ac
a

= ±– –2 4
2

   

This important result, known as the quadratic formula, has significance beyond 

the solution of awkward quadratic equations, as you will see later. The next two 

examples, however, demonstrate its use as a tool for solving equations.

EXAMPLE 1.32 Use the quadratic formula to solve 3x 2 − 6x + 2 = 0.

SOLUTION

Comparing this to the form ax 2 + bx + c = 0

gives a = 3, b = –6 and c = 2.

Substituting these values in the formula x b b ac
a

= ±– –2 4
2

gives x = ±6 36 24
6

–

       = 0.423 or 1.577 (to 3 d.p.). 

EXAMPLE 1.33 Solve x 2 − 2x + 2 = 0.

SOLUTION

The first thing to notice is that this cannot be factorised. The only two whole 

numbers which multiply to give 2 are 2 and 1 (or −2 and −1) and they cannot be 

added to get −2.

Comparing x 2 − 2x + 2 to the form ax 2 + bx + c = 0

gives a = 1, b = −2 and c = 2.
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Substituting these values in x b b ac
a

= ±– –2 4
2

gives 
2 4 8

2

2 4
2

±

±

–

–= 

2 4 8
2

2 4
2

±

±

–

–

Trying to find the square root of a negative number creates problems. 

A positive number multiplied by itself is positive: +2 × +2 = +4.

A negative number multiplied by itself is also positive: −2 × −2 = +4.

Since −4 can be neither positive nor negative, no such number exists, and so 

you can find no real solution.

Note

It is not quite true to say that a negative number has no square root. Certainly it 

has none among the real numbers but mathematicians have invented an imaginary 

number, denoted by i, with the property that i2 = −1. Numbers like 1 + i and −1 − i 

(which are in fact the solutions of the equation above) are called complex numbers. 

Complex numbers are extremely useful in both pure and applied mathematics; they 

are covered in P3.

To return to the problem of solving the equation x2 − 2x + 2 = 0, look what 

happens if you draw the graph of y = x 2 − 2x + 2. The table of values is given 

below and the graph is shown in figure 1.9. As you can see, the graph does not 

cut the x axis and so there is indeed no real solution to this equation. 

x −1 0 1 2 3

x2 +1 0 +1 +4 +9

−2x +2 0 –2 −4 −6

+2 +2 +2 +2 +2 +2

y +5 +2 +1 +2 +5

0 1 2 3–1

–1

1

2

3

4

5

y

x

Figure 1.9 
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The part of the quadratic formula which determines whether or not there are real 

roots is the part under the square root sign. This is called the discriminant.

x b b ac
a

= ±– –2 4
2

  

If b2 − 4ac > 0, the equation has two real roots (see figure 1.10).

If b2 − 4ac < 0, the equation has no real roots (see figure 1.11).

If b2 − 4ac = 0, the equation has one repeated root (see figure 1.12).

The discriminant, b2 – 4ac

x

Figure 1.10

x

Figure 1.11

x

Figure 1.12
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EXERCISE 1F   1 Use the quadratic formula to solve the following equations, where possible.

(i) x2 + 8x + 5 = 0 (ii) x2 + 2x + 4 = 0

(iii) x2 − 5x − 19 = 0  (iv) 5x2 − 3x + 4 = 0 

(v) 3x2 + 2x − 4 = 0  (vi) x2 − 12 = 0

2 Find the value of the discriminant and use it to find the number of real roots 

for each of the following equations.

(i) x2 − 3x + 4 = 0 (ii) x2 − 3x − 4 = 0

(iii) 4x2 − 3x = 0  (iv) 3x2 + 8 = 0 

(v) 3x2 + 4x + 1 = 0  (vi) x2 + 10x + 25 = 0 

3 Show that the equation ax2 + bx − a = 0 has real roots for all values of a and b.

4 Find the value(s) of k for which these equations have one repeated root.

(i) x2 − 2x + k = 0  (ii) 3x2 − 6x + k = 0 

(iii) kx2 + 3x − 4 = 0  (iv) 2x2 + kx + 8 = 0

(v) 3x2 + 2kx − 3k = 0  

5 The height h metres of a ball at time t seconds after it is thrown up in the air is 

given by the expression

h = 1 + 15t − 5t2.

(i) Find the times at which the height is 11 m.

(ii) Use your calculator to find the time at which the ball hits the ground.

(iii) What is the greatest height the ball reaches?

Simultaneous equations

There are many situations which can only be described mathematically in terms 

of more than one variable. When you need to find the values of the variables in 

such situations, you need to solve two or more equations simultaneously (i.e. at 

the same time). Such equations are called simultaneous equations. If you need to 

find values of two variables, you will need to solve two simultaneous equations; 

if three variables, then three equations, and so on. The work here is confined 

to solving two equations to find the values of two variables, but most of the 

methods can be extended to more variables if required.
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Linear simultaneous equations

EXAMPLE 1.34 At a poultry farm, six hens and one duck cost $40, while four hens and three 

ducks cost $36. What is the cost of each type of bird?

SOLUTION

Let the cost of one hen be $h and the cost of one duck be $d.

Then the information given can be written as:

6h + d = 40 1    

4h + 3d = 36. 2

There are several methods of solving this pair of equations.

Method 1: Elimination

Multiplying equation 1    by 3 ⇒ 18h + 3d = 120
Leaving equation 2 ⇒ 4h + 3d =  36

Subtracting ⇒ 14h  =  84
Dividing both sides by 14 ⇒ h = 6
Substituting h = 6 in equation 1   gives 36 + d = 40
 ⇒ d = 4

Therefore a hen costs $6 and a duck $4.

Note

1 The first step was to multiply equation 1   by 3 so that there would be a term 3d 

in both equations. This meant that when equation 2  was subtracted, the variable 

d was eliminated and so it was possible to find the value of h.

2 The value h = 6 was substituted in equation 1   but it could equally well have 

been substituted in the other equation. Check for yourself that this too gives the 

answer d = 4.

Before looking at other methods for solving this pair of equations, here is another 

example.

EXAMPLE 1.35 Solve 3x + 5y = 12  1    
 2x − 6y = −20 2   

SOLUTION
 1   × 6 ⇒ 18x + 30y = 72
 2   × 5 ⇒ 10x − 30y = −100

 Adding ⇒ 28x = −28
 Giving  x = −1

Substituting x = −1 in equation 1    ⇒ −3 + 5y = 12
Adding 3 to each side   ⇒ 5y = 15
Dividing by 5  ⇒ y = 3

Therefore x = −1, y = 3.
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Note

In this example, both equations were multiplied, the first by 6 to give +30y and the 

second by 5 to give −30y. Because one of these terms was positive and the other 

negative, it was necessary to add rather than subtract in order to eliminate y.

Returning now to the pair of equations giving the prices of hens and ducks,

6h + d = 40 1  

4h + 3d = 36 2  

here are two alternative methods of solving them.

Method 2: Substitution

The equation 6h + d = 40 is rearranged to make d its subject: 

d = 40 − 6h.

This expression for d is now substituted in the other equation, 4h + 3d = 36, giving

 4h + 3(40 − 6h) = 36

⇒ 4h + 120 − 18h = 36

⇒ −14h = −84

⇒ h  = 6

Substituting for h in d = 40 – 6h gives d = 40 − 36 = 4.

Therefore a hen costs $6 and a duck $4 (the same answer as before, of course).

Method 3: Intersection of the graphs of the equations

Figure 1.13 shows the graphs of the two equations, 6h + d = 40 and 4h + 3d = 36. 

As you can see, they intersect at the solution, h = 6 and d = 4.

0 1 2 3 4 5 6 7 8 9 10

2

3

1

4

5

6

7

8

9

10

d

h

4h + 3d = 36 

6h + d = 40

Figure 1.13
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Non-linear simultaneous equations

The simultaneous equations in the examples so far have all been linear, that 

is their graphs have been straight lines. A linear equation in, say, x and y 

contains only terms in x and y and a constant term. So 7x + 2y = 11 is linear 

but 7x2 + 2y = 11 is not linear, since it contains a term in x2.

You can solve a pair of simultaneous equations, one of which is linear and the 

other not, using the substitution method. This is shown in the next example.

EXAMPLE 1.36 Solve x + 2y = 7 1   

 x2 + y2 = 10 2    

SOLUTION

Rearranging equation 1    gives x = 7 − 2y.

Substituting for x in equation 2  :

(7 − 2y)2 + y2 = 10

Multiplying out the (7 − 2y) × (7 − 2y) 

gives 49 − 14y − 14y + 4y2 = 49 − 28y + 4y2,

so the equation is

49 − 28y + 4y2 + y2 = 10.

This is rearranged to give

  5y2 − 28y + 39 = 0 

⇒ 5y2 − 15y − 13y + 39 = 0

⇒ 5y(y − 3) − 13(y − 3) = 0

⇒ (5y − 13)(y − 3) = 0

Either 5y − 13 = 0 ⇒  y = 2.6

Or y − 3 = 0 ⇒  y = 3

Substituting in equation 1  ,  x + 2y = 7:

y = 2.6 ⇒ x = 1.8

y = 3 ⇒ x = 1

The solution is either x = 1.8, y = 2.6  or  x = 1, y = 3.

!  Always substitute into the linear equation. Substituting in the quadratic will give 

you extra answers which are not correct.

A quadratic in y which you 
can now solve using  

factorisation or the formula.
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EXERCISE 1G   1 Solve the following pairs of simultaneous equations.

(i) 2x + 3y = 8 (ii) x + 4y = 16 (iii) 7x + y = 15

 3x + 2y = 7  3x + 5y = 20  4x + 3y = 11

(iv) 5x − 2y = 3 (v) 8x − 3y = 21 (vi) 8x + y = 32 

 x + 4y = 5  5x + y = 16  7x − 9y = 28

(vii) 4x + 3y = 5 (viii) 3u − 2v = 17 (ix) 4l − 3m = 2

 2x − 6y = −5  5u − 3v = 28  5l − 7m = 9

2 A student wishes to spend exactly $10 at a second-hand bookshop. All 

the paperbacks are one price, all the hardbacks another. She can buy five 

paperbacks and eight hardbacks. Alternatively she can buy ten paperbacks  

and six hardbacks.

(i) Write this information as a pair of simultaneous equations.

(ii) Solve your equations to find the cost of each type of book.

3 The cost of a pear is 5c greater than that of an apple. Eight apples and nine 

pears cost $1.64.

(i) Write this information as a pair of simultaneous equations.

(ii) Solve your equations to find the cost of each type of fruit.

4 A car journey of 380 km lasts 4 hours. Part of this is on a motorway at an average 

speed of 110 km h−1, the rest on country roads at an average speed of 70 km h−1.

(i) Write this information as a pair of simultaneous equations.

(ii) Solve your equations to find how many kilometres of the journey is spent 

on each type of road.

5 Solve the following pairs of simultaneous equations.

(i) x2 + y2 = 10 (ii) x2 − 2y2 = 8 (iii) 2x2 + 3y = 12

 x + y = 4  x + 2y = 8  x − y = –1

(iv) k2 + km = 8 (v) t1
2 − t2

2 = 75 (vi) p + q + 5 = 0

 m = k − 6  t1 = 2t2  p2 = q2 + 5

(vii) k(k − m) = 12 (viii) p1
2 − p2

2 = 0

 k(k + m) = 60  p1 + p2 = 2
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6  		The diagram shows the net of a cylindrical container of radius r cm and height 

h cm. The full width of the metal sheet from which the container is made is 1 m, 

and the shaded area is waste. The surface area of the container is 1400π cm2.

(i)  Write down a pair of simultaneous equations for r and h.

(ii)  Find the volume of the container, giving your answers in terms of π. 

(There are two possible answers.)

7  A large window consists of six square panes of glass as shown. Each pane is  

x m by x m, and all the dividing wood is y m wide.

(i)  Write down the total area of the whole window in terms of x and y.

(ii)  Show that the total area of the dividing wood is 7xy + 2y2.

(iii) The total area of glass is 1.5 m2, and the total area of dividing wood is 

1 m2. Find x, and hence find an equation for y and solve it.  

   [MEI]

Inequalities

Not all algebraic statements involve the equals sign and it is just as important to 

be able to handle algebraic inequalities as it is to solve algebraic equations. The 

solution to an inequality is a range of possible values, not specific value(s) as in 

the case of an equation.

h

rr

1 m

x

x

y

y
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Linear inequalities

! 	 The	methods	for	linear	inequalities	are	much	the	same	as	those	for	equations	but			

you	must	be	careful	when	multiplying	or	dividing	through	an	inequality	by	a			

negative	number.

Take	for	example	the	following	statement:

	 		5		3	is	true

Multiply	both	sides	by	−1	 –5		−3	is	false.

! 	 It	is	actually	the	case	that	multiplying	or	dividing	by	a	negative	number	reverses	

the	inequality,	but	you	may	prefer	to	avoid	the	difficulty,	as	shown	in	the		

examples	below.

EXAMPLE 1.37  Solve	5x	−	3		2x	−	15.

SOLUTION

Add	3	to,	and	subtract	2x	from,	both	sides	 ⇒	 5x	−	2x		 −15	+	3

Tidy	up	 ⇒	 	 3x	 	 −12

Divide	both	sides	by	3	 ⇒	 	 x	 	 −4

Note

Since there was no need to multiply or divide both sides by a negative number, no 

problems arose in this example.

EXAMPLE 1.38  Solve	 	 2y	+	6		7y	+	11.

SOLUTION

Subtract	6	and	7y	from	both	sides	 ⇒	 2y	−	7y	 	 11	−	6

Tidy	up	 ⇒	 −5y	 >	 +5

Add	5y	to	both	sides	and	subtract	5		 ⇒	 −5	 	 +5y

Divide	both	sides	by	+5	 ⇒	 −1	 	y

Note	that	logically	−1		y	is	the	same	as	y		 −1,	so	the	solution	is	y		 −1.

Beware: do not  
divide both sides  

by –5.

This now allows  
you to divide both 

sides by +5.
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Quadratic inequalities

EXAMPLE 1.39 Solve  (i) x2 − 4x + 3  0     (ii) x2 − 4x + 3  0.

SOLUTION

The graph of y = x2 − 4x + 3 is shown in figure 1.14 with the green parts of the 

x axis corresponding to the solutions to the two parts of the question.

(i) You want the values of x for which  (ii) You want the values of x for 

y  0, which that is where the curve  y  0, that is where the curve 

is above the x axis.  crosses or is below the x axis.

      

 The solution is x  1 or x  3. The solution is x  1 and x  3,

  usually witten 1  x  3.

EXAMPLE 1.40 Find the set of values of k for which x2 + kx + 4 = 0 has real roots.

SOLUTION

A quadratic equation, ax2 + bx + c = 0, has real roots if  b2 − 4ac  0.

So x2 + kx + 4 = 0 has real roots if k2 − 4 × 4 × 1  0.     

⇒ k2 − 16  0  

⇒ k2  16 

So the set of values is k  4 and k  −4.

Here the end points are not included in the 
inequality so you draw open circles: 

Here the end points are included in the 
inequality so you draw solid circles: •

0 x32 41
–1

2

1

3

y

0 x32 41
–1

2

1

3

y

Figure 1.14

Take the square root 
of both sides.

Take care: (–5)2 = 25 and 
(–3)2 = 9, so k must be 
less than or equal to –4.
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EXERCISE 1H  1 Solve the following inequalities.

(i) 5a + 6  2a + 24 (ii) 3b − 5  b − 1

(iii) 4(c − 1)  3(c − 2) (iv) d − 3(d + 2)  2(1 + 2d)

(v) 1
2

1
23e +   e (vi) −f − 2f − 3  4(1 + f )

(vii) 5(2 − 3g) + g  8(2g − 4) (viii) 3(h + 2) − 2(h − 4)  7(h + 2)

2 Solve the following inequalities by sketching the curves of the functions 

involved. 

(i) p2 − 5p + 4 < 0 (ii) p2 − 5p + 4  0

(iii) x2 + 3x + 2  0 (iv) x2 + 3x  −2

(v) y2 − 2y − 3  0 (vi) z(z − 1)  20

(vii) q2 − 4q + 4  0 (viii) y(y − 2)  8

(ix) 3x2 + 5x − 2  0 (x) 2y2 − 11y − 6  0

(xi) 4x − 3  x2 (xii) 10y2  y + 3

3 Find the set of values of k for which each of these equations has two real roots.

(i) 2x2 − 3x + k = 0  (ii) kx2 + 4x − 1 = 0 

(iii) 5x2 + kx + 5 = 0  (iv) 3x2 + 2kx + k = 0 

4 Find the set of values of k for which each of these equations has no real roots.

(i) x2 − 6x + k = 0  (ii) kx2 + x − 2 = 0 

(iii) 4x2 − kx + 4 = 0 (iv) 2kx2 − kx + 1 = 0 

KEY POINTS

1 The quadratic formula for solving ax2 + bx + c = 0 is

x b b ac
a

= − ± −2 4
2    

  

where b2 − 4ac is called the discriminant.

If b2 − 4ac  0, the equation has two real roots.

If b2 − 4ac = 0, the equation has one repeated root.

If b2 − 4ac  0, the equation has no real roots.

2 To solve a pair of simultaneous equations where one equation is non-linear:

●● first make x or y the subject of the linear equation

●● then substitute this rearranged equation for x or y in the non-linear equation

●● solve to find y or x

●● substitute back into the linear equation to find pairs of solutions.

3 Linear inequalities are dealt with like equations but if you multiply or divide 

by a negative number you must reverse the inequality sign.

4 When solving a quadratic inequality it is advisable to sketch the graph. 
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Co-ordinate geometry

A place for everything, and everything in its place
Samuel Smiles

Co-ordinates

Co-ordinates are a means of describing a position relative to some fixed point, 
or origin. In two dimensions you need two pieces of information; in three 
dimensions, you need three pieces of information. 

In the Cartesian system (named after René Descartes), position is given in 
perpendicular directions: x, y in two dimensions; x, y, z in three dimensions (see 
figure 2.1). This chapter concentrates exclusively on two dimensions.

Ahead for 3 blocks,
turn right, then continue

for 5 blocks.   
 

Fly for 3 km on a
bearing of 360°. 

Travel on bus
34 for 8 stops.   

Ahead for 3 blocks,
turn right, then continue

for 5 blocks.   

Travel on bus
34 for 8 stops.  

0 1

–1

2 3 4–1

1

2

3

y

x

2

3 (3, 2)

y

x

0 1

–1

2 3 4–1

1

2

3

y

x

2

3 (3, 2)

5

0 1

–1

2 3
3

4

4

–1 –1
–2

–3
–4

1
2

3

–2

1

2

3

4

z

y

x

5

(3, 4, 5)

4
5

Figure 2.1 

2
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Plotting, sketching and drawing

In two dimensions, the co-ordinates of points are often marked on paper and 

joined up to form lines or curves. A number of words are used to describe  

this process.

Plot (a line or curve) means mark the points and join them up as accurately as 

you can. You would expect to do this on graph paper and be prepared to read 

information from the graph.

Sketch means mark points in approximately the right positions and join them up 

in the right general shape. You would not expect to use graph paper for a sketch 

and would not read precise information from one. You would however mark on 

the co-ordinates of important points, like intersections with the x and y axes and 

points at which the curve changes direction.

Draw means that you are to use a level of accuracy appropriate to the 

circumstances, and this could be anything between a rough sketch and a very  

accurately plotted graph.

The gradient of a line

In everyday English, the word line is used to mean a straight line or a curve. In 

mathematics, it is usually understood to mean a straight line. If you know the  

co-ordinates of any two points on a line, then you can draw the line.

The slope of a line is measured by its gradient. It is often denoted by the letter m.

In figure 2.2, A and B are two points on the line. The gradient of the line AB is 

given by the increase in the y co-ordinate from A to B divided by the increase in 

the x co-ordinate from A to B.

y

x

(2, 4)
A

B(6, 7)

O

Figure 2.2 

θ

Gradient m =
 
7 4
6 2

3
4

−
− =

 

7 − 4 = 3

θ (theta) is the Greek letter ‘th’.
α (alpha) and β (beta) are also

used for angles.

6 − 2 = 4
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In general, when A is the point (x1, y1) and B is the point (x2, y2), the gradient is

m
y y

x x
= 2 1

2 1

–

–
.

 When the same scale is used on both axes, m = tan θ (see figure 2.2). Figure 2.3 

shows four lines. Looking at each one from left to right: line A goes uphill and 

its gradient is positive; line B goes downhill and its gradient is negative. Line C is 

horizontal and its gradient is 0; the vertical line D has an infinite gradient.

ACTIVITY 2.1 On each line in figure 2.3, take any two points and call them (x1, y1) and (x2, y2). 

Substitute the values of x1, yl, x2 and y2 in the formula

m
y y

x x
= 2 1

2 1

–

–  

and so find the gradient.

●? Does it matter which point you call (x1, y1) and which (x2, y2)?

Parallel and perpendicular lines

If you know the gradients m1 and m2 of two lines, you can tell at once if they are 

either parallel or perpendicular − see figure 2.4.

1 2 3 4 5 6 80 7

1

2

3

4

5

y

x

A
B

C

D

Figure 2.3 

m1

m1

m2

m2

parallel lines: m1 = m2 perpendicular lines: m1m2 =  −1Figure 2.4 
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Lines which are parallel have the same slope and so m1 = m2. If the lines are 

perpendicular, m1m2 = −1. You can see why this is so in the activities below.

ACTIVITY 2.2 Draw the line L1 joining (0, 2) to (4, 4), and draw another line L2 perpendicular 

to L1. Find the gradients m1 and m2 of these two lines and show that m1m2 = −1.

ACTIVITY 2.3 The lines AB and BC in figure 2.5 are equal in length and perpendicular. By 

showing that triangles ABE and BCD are congruent prove that the gradients m1 

and m2 must satisfy m1m2 = −1.

!  Lines for which m1m2 = −1 will only look perpendicular if the same scale has been 

used for both axes.

The distance between two points

When the co-ordinates of two points are known, the distance between them can 

be calculated using Pythagoras’ theorem, as shown in figure 2.6.

y

x

gradient m1
gradient m2

A
E

D C

B

O

θ

θ

Figure 2.5 

y

x

(2, 4)
A

B(6, 7)

O

Figure 2.6 

C

AC = 6 − 2 = 4

BC = 7 − 4 = 3

 AB2 = 42 + 32

  = 25
 AB = 5
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This method can be generalised to find the distance between any two points, 

A(x1, y1) and B(x2, y2), as in figure 2.7.

The length of the line AB is ( ) ( )x x y y2 1
2

2 1
2− + − .

The mid-point of a line joining two points

Look at the line joining the points A(2, 1) and B(8, 5) in figure 2.8. The point 

M(5, 3) is the mid-point of AB.

Notice that the co-ordinates of M are the means of the co-ordinates of A and B.

5 2 8 3 1 51
2

1
2= + = +( ); ( ).

 

This result can be generalised as follows. For any two points A(x1, y1) and 

B(x2, y2), the co-ordinates of the mid-point of AB are the means of the 

co-ordinates of A and B so the mid-point is

x x y y1 2 1 2

2 2
+ +



, .

  

y

x

A C

B(x2, y2)

(x1, y1)

O

Figure 2.7 

BC = y
2
 − y

1

The co-ordinates
of this point must     

be (x
2
,   y

1
).

AC = x
2
 − x

1

y

x0

1 A

M

P

Q

B(8, 5)

(2, 1)
3

3

2

3
2

21

2

3

4

5

654 87

Figure 2.8 
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EXAMPLE 2.1 A and B are the points (2, 5) and (6, 3) respectively (see figure 2.9). Find: 

(i) the gradient of AB 

(ii) the length of AB 

(iii) the mid-point of AB 

(iv) the gradient of a line perpendicular to AB.

SOLUTION

Taking A(2, 5) as the point (x1, y1), and B(6, 3) as the point (x2, y2) gives x1 = 2, 

y1 = 5, x2 = 6,�y2 = 3. 

(i) Gradient =  
y y

x x
2 1

2 1

3 5
6 2

1
2

–

–

–
–

–= =

 

                        
=  

y y

x x
2 1

2 1

3 5
6 2

1
2

–

–

–
–

–= =
 
 

(ii) Length AB   

(iii) Mid-point =
+ +





= + +( ) =
x x y y1 2 1 2

2 2

2 6
2

5 3
2

4 4

,

, ( , )

 
 

(iv) Gradient of AB = m1 = – .1
2

 If m2 is the gradient of a line perpendicular to AB, then m1m2 = −1

 ⇒ – –1
2 2 1m =

 m2 = 2.

EXAMPLE 2.2 Using two different methods, show that the lines 

joining P(2, 7), Q(3, 2) and R(0, 5) form a 

right-angled triangle (see figure 2.10). 

SOLUTION

Method 1

Gradient of RP  = =7 5
2 0

1–
–

Gradient of RQ = =2 5
3 0

1–
–

–  

⇒ Product of gradients = 1 × (−1) = −1

⇒ Sides RP and RQ are at right angles.

y

x

B(6, 3)

A(2, 5)

O

Figure 2.9 

= − + −

= − + −

= + =

( ) ( )

( ) ( )

x x y y2 1
2

2 1
2

2 26 2 3 5

16 4 20

y

x

P(2, 7)

R(0, 5)

Q(3, 2)

0

1

2

3

4

5

6

7

1 2 3 4

Figure 2.10 



C
o

-o
rd

in
a
te

 g
e
o

m
e
tr

y

44

P1 

2

Method 2

Pythagoras’ theorem states that for a right-angled triangle whose hypotenuse has 

length a and whose other sides have lengths b and c, a2 = b2 + c2.

Conversely, if you can show that a2 = b2 + c2 for a triangle with sides of lengths a, b, 
and c, then the triangle has a right angle and the side of length a is the hypotenuse.

This is the basis for the alternative proof, in which you use

 length2 = (x2 − x1)2 + (y2 − y1)2.

 PQ2 = (3 − 2)2 + (2 − 7)2 = 1 + 25 = 26

 RP2 = (2 − 0)2 + (7 − 5)2 = 4 + 4 = 8

 RQ2 = (3 − 0)2 + (2 − 5)2 = 9 + 9 = 18

Since 26 = 8 + 18, PQ2 = RP2 + RQ2

⇒   Sides RP and RQ are at right angles.

EXERCISE 2A 1 �For the following pairs of points A and B, calculate:

(a) the gradient of the line AB

(b) the mid-point of the line joining A to B

(c) the distance AB

(d) the gradient of the line perpendicular to AB.

(i) A(0, 1) B(2, −3) (ii) A(3, 2) B(4, −1)

(iii) A(−6, 3) B(6, 3) (iv) A(5, 2) B(2, −8)

(v) A(4, 3) B(2, 0) (vi) A(1, 4) B(1, −2)

2 The line joining the point P(3, −4) to Q(q, 0) has a gradient of 2. 
Find the value of q.

3 The three points X(2, −1), Y(8, y) and Z(11, 2) are collinear (i.e. they lie on the 
same straight line).  
Find the value of y. 

4 The points A, B, C and D have co-ordinates (1, 2), (7, 5), (9, 8) and (3, 5). 

(i) Find the gradients of the lines AB, BC, CD and DA. 

(ii) What do these gradients tell you about the quadrilateral ABCD? 

(iii) Draw a diagram to check your answer to part (ii).

5 The points A, B and C have co-ordinates (2, 1), (b, 3) and (5, 5), where b�> 3 

and ∠ABC = 90°. Find: 

(i) the value of b

(ii) the lengths of AB and BC

(iii) the area of triangle ABC.
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6 The triangle PQR has vertices P(8, 6), Q(0, 2) and R(2, r). Find the values of 

r when the triangle: 

(i) has a right angle at P

(ii) has a right angle at Q

(iii) has a right angle at R

(iv) is isosceles with RQ = RP.

7 The points A, B, and C have co-ordinates (−4, 2), (7, 4) and (−3, −1).

(i) Draw the triangle ABC.

(ii) Show by calculation that the triangle ABC is isosceles and name the two 

equal sides.

(iii) Find the mid-point of the third side.

(iv) By calculating appropriate lengths, calculate the area of the triangle ABC.

8 For the points P(x, y), and Q(3x, 5y), find in terms of x and y : 

(i) the gradient of the line PQ

(ii) the mid-point of the line PQ

(iii) the length of the line PQ.

9 A quadrilateral has vertices A(0, 0), B(0, 3), C(6, 6) and D(12, 6). 

(i) Draw the quadrilateral. 

(ii) Show by calculation that it is a trapezium. 

(iii) Find the co-ordinates of E when EBCD is a parallelogram.

10 Three points A, B and C have co-ordinates (1, 3), (3, 5) and (−1, y). 
Find the values of y when: 

(i) AB = AC

(ii) AC = BC

(iii) AB is perpendicular to BC

(iv) A, B and C are collinear.

11  The diagonals of a rhombus bisect each other at 90°, and conversely, when 

two lines bisect each other at 90°, the quadrilateral formed by joining the end 

points of the lines is a rhombus.

Use the converse result to show that the points with co-ordinates (1, 2),  

(8, −2), (7, 6) and (0, 10) are the vertices of a rhombus, and find its area.
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The equation of a straight line

The word straight means going in a constant direction, that is with fixed gradient. 

This fact allows you to find the equation of a straight line from first principles.

EXAMPLE 2.3 Find the equation of the straight line with gradient 2 through the point (0, −5).

SOLUTION

Take a general point (x, y) on the line, as shown in figure 2.11. The gradient of 

the line joining (0, −5) to (x, y) is given by 

gradient = = +y
x

y
x

– (– )
–

.
5

0
5

Since we are told that the gradient of the line is 2, this gives

 
y

x
+ =5

2� � ��

⇒� �������y�=�2x�− 5.� � �

Since (x, y) is a general point on the line, this holds for any point on the line and 

is therefore the equation of the line.

The example above can easily be generalised (see page 50) to give the result that 

the equation of the line with gradient m cutting the y axis at the point (0, c) is

y = mx + c.

(In the example above, m is 2 and c is −5.) 

This is a well-known standard form for the equation of a straight line.

0 2 31 4 5–1
–1

–2

–3

–4

–5 (0, –5)

(x, y)
2

3

1

4

y

x

Figure 2.11 
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Drawing a line, given its equation

There are several standard forms for the equation of a straight line, as shown in 

figure 2.12.

When you need to draw the graph of a straight line, given its equation, the first 

thing to do is to look carefully at the form of the equation and see if you can 

recognise it.

y

x(3, 0)

x = 3

O

y

x

(0, 2)
y = 2

O

y

x(3, 0)

x = 3

O

y

x

(0, 2)
y = 2

O

(a)  Equations of the form x = a                     (b)  Equations of the form y = b

All such lines are 
parallel to the y axis.

All such lines are       
parallel to the x axis.

(a), (b): Lines parallel to the axes

Lines parallel to the x axis have the form y = constant, those parallel to the y axis 

the form x = constant. Such lines are easily recognised and drawn.

y

x

y = –4x y =    x1–2

O

y

x

(0, 2)

(3, 0)

2x + 3y – 6 = 0

O

y

x

(0, 1)

(1, 0)

(0, –1)

(3, 0)

y = x – 1

O

y =      x + 11–3–

y

x

y = –4x y =    x1–2

O

y

x

(0, 2)

(3, 0)

2x + 3y – 6 = 0

O

y

x

(0, 1)

(1, 0)

(0, –1)

(3, 0)

y = x – 1

O

y =      x + 11–3–

(c)  Equations of the form y = mx        (d)  Equations of the form y = mx + c

These are lines through the 
origin, with gradient m.

These lines have 
gradient m and 
cross the y axis
at point (0, c).

y

x

y = –4x y =    x1–2

O

y

x

(0, 2)

(3, 0)

2x + 3y – 6 = 0

O

y

x

(0, 1)

(1, 0)

(0, –1)

(3, 0)

y = x – 1

O

y =      x + 11–3–

Figure 2.12 

(e)  Equations of the form px + qy + r = 0

This is often a tidier way of 
writing the equation.



C
o

-o
rd

in
a
te

 g
e
o

m
e
tr

y

48

P1 

2

(c), (d): Equations of the form y = mx + c

The line y = mx + c crosses the y axis at the point (0, c) and has gradient m. If c = 0, 

it goes through the origin. In either case you know one point and can complete 

the line either by finding one more point, for example by substituting x = 1, or 

by following the gradient (e.g. 1 along and 2 up for gradient 2).

(e): Equations of the form px + qy + r = 0

In the case of a line given in this form, like 2x + 3y − 6 = 0, you can either 

rearrange it in the form y = mx + c (in this example y x= +– ),2
3 2 �or you can find 

the co-ordinates of two points that lie on it. Putting x = 0 gives the point where it 

crosses the y axis, (0, 2), and putting y = 0 gives its intersection with the x axis, (3, 0).

EXAMPLE 2.4 Sketch the lines x = 5, y = 0 and y = x on the same axes. 

Describe the triangle formed by these lines.

SOLUTION

The line x = 5 is parallel to the y axis and passes through (5, 0).

The line y = 0 is the x axis.

The line y =�x has gradient 1 and goes through the origin.

The triangle obtained is an isosceles right-angled triangle, since OA = AB = 5 
units, and ∠OAB = 90°.

EXAMPLE 2.5 Draw y = x�− 1 and 3x + 4y = 24 on the same axes.

SOLUTION

The line y = x − 1 has gradient 1 and passes through the point (0, −1).    

Substituting y = 0 gives x = 1, so the line also passes through (1, 0).

Find two points on the line 3x + 4y = 24.

Substituting x = 0 gives 4y = 24 so y = 6.

Substituting y = 0 gives 3x = 24 so x = 8.

y

x

y = x

y = 0

x = 5

(5, 0)

B

A
O

Figure 2.13 

 B is (5, 5) since
 at B, y = x
 and x = 5,
 so x = y = 5.
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The line passes through (0, 6) and (8, 0).

EXERCISE 2B   1 Sketch the following lines.

(i) y = −2 (ii) x = 5 (iii) y = 2x�

(iv) y = −3x (v) y = 3x + 5 (vi) y = x − 4

(vii) y = x + 4 (viii) y x= +1
2 2 (ix) y x= +2 1

2 �

(x) y = −4x + 8 (xi) y = 4x − 8 (xii) y = −x + 1 

(xiii) y x= – –1
2 2 � (xiv) y = 1 − 2x (xv) 3x − 2y = 6 

(xvi) 2x + 5y = 10 (xvii) 2x +�y − 3 = 0 (xviii) 2y = 5x − 4

(xix) x + 3y − 6 = 0 (xx) y = 2 − x

2 By calculating the gradients of the following pairs of lines, state whether they 

are parallel, perpendicular or neither.

(i) y = −4 x = 2 (ii) y = 3x x = 3y

(iii) 2x + y = 1 x − 2y = 1 (iv) y = 2x + 3 4x − y + 1 = 0

(v) 3x − y + 2 = 0 3x + y = 0 (vi) 2x + 3y = 4 2y = 3x − 2

(vii) x + 2y − 1 = 0 x + 2y + 1 = 0 (viii) y = 2x − 1 2x − y + 3 = 0

(ix) y�=�x − 2 x + y = 6 (x) y = 4 − 2x x�+ 2y�= 8

(xi) x + 3y − 2 = 0 y = 3x + 2 (xii) y = 2x 4x + 2y = 5

Finding the equation of a line

The simplest way to find the equation of a straight line depends on what 

information you have been given.

y

x
(8, 0)

(0, –1)

3x + 4y = 24

y = x – 1

(1, 0)

(0, 6)

0
1 2 3 4 5 6 7 8

1

2

3

4

5

6

Figure 2.14 
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(i)  Given the gradient, m, and the co-ordinates (x1, y1) of one 
point on the line

Take a general point (x, y) on the line, as shown in figure 2.15.

The gradient, m, of the line joining (x1, y1) to (x, y) is given by

 
m

y y

x x
=

–

–
1

1

⇒� y�− y1 = m (x�− x1).

This is a very useful form of the equation of a straight line. Two positions of the 

point (x1, y1) lead to particularly important forms of the equation.

(a) When the given point (x1, y1) is the point (0, c), where the line crosses the 
y axis, the equation takes the familiar form

y = mx + c 

as shown in figure 2.16.

(b) When the given point (x1, y1) is the origin, the equation takes the form

y = mx

as shown in figure 2.17.

y

x

(x1, y1)

(x, y)

O

Figure 2.15 

y

x

y = mx

O

y

x

y = mx + c

(0, c)

O

Figure 2.16                                          Figure 2.17 
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EXAMPLE 2.6 Find the equation of the line with gradient 3 which passes through the point (2, −4).

SOLUTION

Using y − y1 = m(x − x1) 

⇒ y − (−4) = 3(x − 2) 

⇒ y + 4 = 3x − 6

⇒ y = 3x�− 10.

(ii) Given two points, (x1, y1) and (x2, y2)

The two points are used to find the  

gradient:

m
y y

x x
= 2 1

2 1

–

–
.

This value of m is then substituted in 

the equation

y − y1 = m (x − x1). 

This gives 

y y
y y

x x
x x–

–

–
– .1

2 1

2 1
1= 



 ( )

Rearranging the equation gives

y y

y y

x x

x x

y y

x x

y y

x x

–

–

–

–

–

–

–

–
1

2 1

1

2 1

1

1

2 1

2 1
= =or

EXAMPLE 2.7 Find the equation of the line joining (2, 4) to (5, 3).

SOLUTION

Taking (x1, y1) to be (2, 4) and (x2, y2) to be (5, 3), and substituting the values in

y y

y y

x x

x x

–

–

–

–
1

2 1

1

2 1
=

gives 
y x–

–
–
–

.
4

3 4
2

5 2
=  

This can be simplified to x + 3y − 14 = 0.

●? Show that the equation of the line in figure 2.19 

can be written 

x
a

y
b

+ = 1.

y

x

(x2, y2)

(x1, y1) (x, y)

O

Figure 2.18 

(a, 0)

O

y

x

(0, b)

Figure 2.19 
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Different techniques to solve problems

The following examples illustrate the different techniques and show how these 

can be used to solve a problem.

EXAMPLE 2.8 Find the equations of the lines (a) − (e) in figure 2.20.

SOLUTION

Line (a) passes through (0, 2) and has gradient 1

 ⇒ equation of (a) is y = x + 2.

Line (b) is parallel to the x axis and passes through (0, 4)
 ⇒ equation of (b) is y = 4.

Line (c) is parallel to the y axis and passes through (−3, 0)

 ⇒ equation of (c) is x = −3.

Line (d) passes through (0, 0) and has gradient −2

 ⇒ equation of (d) is y = −2x.

Line (e) passes through (0, −1) and has gradient –1
5

 ⇒ equation of (e) is y x= – – .1
5 1

 This can be rearranged to give x + 5y + 5 = 0.

EXAMPLE 2.9 Two sides of a parallelogram are the lines 2y = x + 12 and y = 4x − 10. Sketch 
these lines on the same diagram.

The origin is a vertex of the parallelogram. Complete the sketch of the 
parallelogram and find the equations of the other two sides.

21 43 65 8 970

2

1

3

4

5

y

x

–2

–3

–2 –1

(a)
(b)

(e)
(d)

(c)

–1
–3

Figure 2.20



F
in

d
in

g
 th

e
 e

q
u

a
tio

n
 o

f a
 lin

e

53

P1 

2

SOLUTION

The line 2y = x + 12 has gradient 
1
2 and passes through the point (0, 6)

(since dividing by 2 gives y = 
1
2x + 6).

The line y = 4x − 10 has gradient 4 and passes through the point (0, −10).

The other two sides are lines with gradients 
1
2 and 4 which pass through (0, 0),

i.e. y =  12x and y = 4x.

EXAMPLE 2.10 Find the equation of the perpendicular bisector of the line joining P(−4, 5) to 

Q(2, 3).

SOLUTION

 

y = 4x – 10

2y = x + 12

(0, –10)

x

y

O

(0, 6)

The dashed lines 
are the other 

two sides.

Figure 2.21 

y

x

P(–4, 5)

Q(2, 3)

R

O

Figure 2.22 
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The gradient of the line PQ is

3 5
2 4

2
6

1
3

–
– (– )

– –= =

and so the gradient of the perpendicular bisector is +3.

The perpendicular bisector passes throught the mid-point, R, of the line PQ. The 

co-ordinates of R are

2 4
2

3 5
2

1 4+ +( )(– ), (– , ).i.e.

Using y − y1 = m(x − x1), the equation of the perpendicular bisector is 

 y − 4 = 3(x − (−1)) 

 y − 4 = 3x + 3 

 y = 3x + 7.

EXERCISE 2C  1 Find the equations of the lines (i) − (x) in the diagrams below.

0 2 4 6 8–2–4

–2

–4

2

4

6

x

y

2 4 6 8–2

–2

2

6

x

y

(iii)

(ii)

(i)

(v)

(iv)

(vii)

(vi)

(x)

(viii)

(ix)

–4

0–4

4
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2 Find the equations of the following lines.

(i) parallel to y = 2x and passing through (1, 5)

(ii) parallel to y = 3x − 1 and passing through (0, 0) 

(iii) parallel to 2x + y − 3 = 0 and passing through (−4, 5)

(iv) parallel to 3x − y − 1 = 0 and passing through (4, −2)

(v) parallel to 2x + 3y = 4 and passing through (2, 2)

(vi) parallel to 2x − y − 8 = 0 and passing through (−1, −5)

3 ��Find the equations of the following lines.

(i) perpendicular to y = 3x and passing through (0, 0)

(ii) perpendicular to y = 2x + 3 and passing through (2, −1)

(iii) perpendicular to 2x + y = 4 and passing through (3, 1)

(iv) perpendicular to 2y = x + 5 and passing through (−1, 4)

(v) perpendicular to 2x + 3y = 4 and passing through (5, −1)

(vi) perpendicular to 4x − y + 1 = 0 and passing through (0, 6)

4 Find the equations of the line AB in each of the following cases.

(i) A(0, 0) B(4, 3) (ii) A(2, −1) B(3, 0)

(iii) A(2, 7) B(2, −3) (iv) A(3, 5) B(5, −1)

(v) A(−2, 4) B(5, 3) (vi) A(−4, −2)  B(3, −2)

5 Triangle ABC has an angle of 90° at B. Point A is on the y axis, AB is part of the 
line x − 2y + 8 = 0 and C is the point (6, 2).

(i) Sketch the triangle.

(ii) Find the equations of AC and BC.

(iii) Find the lengths of AB and BC and hence find the area of the triangle.

(iv) Using your answer to part (iii), find the length of the perpendicular from B 
to AC.

6  A median of a triangle is a line joining one of the vertices to the mid-point of 
the opposite side.

In a triangle OAB, O is at the origin, A is the point (0, 6) and B is the point (6, 0).

(i) Sketch the triangle.

(ii) Find the equations of the three medians of the triangle.

(iii) Show that the point (2, 2) lies on all three medians. (This shows that the 
medians of this triangle are concurrent.)

7 A quadrilateral ABCD has its vertices at the points (0, 0), (12, 5), (0, 10) and 
(−6, 8) respectively. 

(i) Sketch the quadrilateral. 

(ii) Find the gradient of each side. 

(iii) Find the length of each side. 

(iv) Find the equation of each side. 

(v) Find the area of the quadrilateral.
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The intersection of two lines

The intersection of any two curves (or lines) can be found by solving their 

equations simultaneously. In the case of two distinct lines, there are two 

possibilities: 

(i) they are parallel

(ii) they intersect at a single point.

EXAMPLE 2.11 Sketch the lines x + 2y = 1 and 2x + 3y�= 4 on the same axes, and find the 

co-ordinates of the point where they intersect.

SOLUTION

The line x + 2y = 1 passes through 0 1
2,( ) and (1, 0).

The line 2x + 3y = 4 passes through 0 4
3,( ) and (2, 0).

1  :   x + 2y = 1 1  : × 2: 2x + 4y = 2

2  : 2x + 3y = 4 2  :        2x + 3y = 4  

    Subtract:        y = −2.

Substituting y = −2 in 1  :  x − 4 = 1

         ⇒ x = 5.

The co-ordinates of the point of intersection are (5, −2).

O 1 2

x + 2y = 1

2x + 3y = 4

x

y

1–2

4–3

Figure 2.23 
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EXAMPLE 2.12 Find the co-ordinates of the vertices of the triangle whose sides have the 

equations x + y = 4, 2x − y = 8 and x + 2y = −1.

SOLUTION

A sketch will be helpful, so first find where each line crosses the axes. 

1   x + y = 4 crosses the axes at (0, 4) and (4, 0).

2   2x − y = 8 crosses the axes at (0, −8) and (4, 0).

3   x + 2y = −1 crosses the axes at 0 1
2, −( ) and (−1, 0).

Since two lines pass through the point (4, 0) this is clearly one of the vertices. It 

has been labelled A on figure 2.24.

Point B is found by solving 2   and 3   simultaneously:

2   × 2: 4x�− 2y = 16

3  :  x�+ 2y = −1

Add 5x = 15   so   x = 3.

Substituting x = 3 in 2   gives y = −2, so B is the point (3, −2).

Point C is found by solving 1   and 3   simultaneously:

1  : x + y = 4

3  :  x + 2y = −1

Subtract  −y�= 5      so    y�= −5.

Substituting y = –5 in 1   gives x = 9, so C is the point (9, −5).

2x – y = 8 

 x + 2y = –1

x + y = 4

–8

4

4–1 x

y

O
A

B

C

1–2–

Figure 2.24 
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●? The line l has equation 2x − y = 4 and the line m has equation�y = 2x − 3. 

 What can you say about the intersection of these two lines?

Historical�note� �René Descartes was born near Tours in France in 1596. At the age of eight he was 

sent to a Jesuit boarding school where, because of his frail health, he was allowed to 

stay in bed until late in the morning. This habit stayed with him for the rest of his life 

and he claimed that he was at his most productive before getting up.

  After leaving school he studied mathematics in Paris before becoming in turn a 

soldier, traveller and optical instrument maker. Eventually he settled in Holland 

where he devoted his time to mathematics, science and philosophy, and wrote a 

number of books on these subjects.

  In an appendix, entitled La Géométrie, to one of his books, Descartes made the 

contribution to co-ordinate geometry for which he is particularly remembered.

  In 1649 he left Holland for Sweden at the invitation of Queen Christina but died  

there, of a lung infection, the following year.

EXERCISE 2D  1 (i)  Find the vertices of the triangle ABC whose sides are given by the lines 

AB: x − 2y = −1, BC: 7x + 6y = 53 and AC: 9x + 2y = 11. 

(ii) Show that the triangle is isosceles.

2 Two sides of a parallelogram are formed by parts of the lines 2x − y = −9 and 

x − 2y�= −9. 

(i) Show these two lines on a graph. 

(ii) Find the co-ordinates of the vertex where they intersect.

Another vertex of the parallelogram is the point (2, 1). 

(iii) Find the equations of the other two sides of the parallelogram. 

(iv) Find the co-ordinates of the other two vertices.

3 A(0, 1), B(1, 4), C(4, 3) and D(3, 0) are the vertices of a quadrilateral ABCD.

(i) Find the equations of the diagonals AC and BD.

(ii) Show that the diagonals AC and BD bisect each other at right angles.

(iii) Find the lengths of AC and BD.

(iv) What type of quadrilateral is ABCD?

4 The line with equation 5x + y = 20 meets the x axis at A and the line with 

equation x + 2y = 22 meets the y axis at B. The two lines intersect at a point C. 

(i) Sketch the two lines on the same diagram. 

(ii) Calculate the co-ordinates of A, B and C. 

(iii) Calculate the area of triangle OBC where O is the origin. 

(iv) Find the co-ordinates of the point E such that ABEC is a parallelogram.
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5 ��� A median of a triangle is a line joining a vertex to the mid-point of the 

opposite side. In any triangle, the three medians meet at a point. 

The centroid of a triangle is at the point of intersection of the medians.

 Find the co-ordinates of the centroid for each triangle shown.

6 You are given the co-ordinates of the four points A(6, 2), B(2, 4), C(−6, −2) 

and D(−2, −4).

(i) Calculate the gradients of the lines AB, CB, DC and DA. 

Hence describe the shape of the figure ABCD.

(ii) Show that the equation of the line DA is 4y − 3x = −10 and find the length 

DA.

(iii) Calculate the gradient of a line which is perpendicular to DA and hence find 

the equation of the line l through B which is perpendicular to DA.

(iv) Calculate the co-ordinates of the point P where l meets DA.

(v) Calculate the area of the figure ABCD.
     [MEI]

7 The diagram shows a triangle whose vertices are A(−2, 1), B(1, 7) and C(3, 1). 
The point L is the foot of the perpendicular from A to BC, and M is the foot of 
the perpendicular from B to AC.

(i) Find the gradient of the line BC.

(ii) Find the equation of the line AL.

(iii) Write down the equation 
of the line BM.

(6, 0)O x (5, 0)(–5, 0) O

y

x

(0, 12)

(0, 9)

y(i) (ii)

L

H

M

B(1, 7)

C(3, 1)
A

(–2, 1)

y

x
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The lines AL and BM meet at H.

(iv) Find the co-ordinates of H.

(v) Show that CH is perpendicular to AB.

(vi) Find the area of the triangle BLH.
     [MEI]

8 The diagram shows a rectangle ABCD. The point A is (0, −2) and C is 

(12, 14). The diagonal BD is parallel to the x axis.

	

(i) Explain why the y co-ordinate of D is 6.

The x co-ordinate of D is h.

(ii) Express the gradients of AD and CD in terms of h.

(iii) Calculate the x co-ordinates of D and B.

(iv) Calculate the area of the rectangle ABCD.

 [Cambridge AS & A Level Mathematics 9709, Paper 12 Q9 November 2009]

9 The diagram shows a rhombus ABCD. The points B and D have co-ordinates 

(2, 10) and (6, 2) respectively, and A lies on the x axis. The mid-point of BD is 
M. Find, by calculation, the co-ordinates of each of M, A and C.

 

    [Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 June 2005]

O
A(0, –2)

C(12, 14)

B D

y

x

O

D(6, 2)

B(2, 10)
C

A

M

y

x
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10 Three points have co-ordinates A(2, 6), B(8, 10) and C(6, 0). The 

perpendicular bisector of AB meets the line BC at D. Find

(i) the equation of the perpendicular bisector of AB in the form ax + by = c

(ii) the co-ordinates of D.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q7 November 2005]

11 The diagram shows a rectangle ABCD. The point A is (2, 14), B is (−2, 8) and 

C lies on the x axis.

	

Find

(i) the equation of BC.

(ii) the co-ordinates of C and D.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 June 2007]

12 The three points A(3, 8), B(6, 2) and C(10, 2) are shown in the diagram. The 

point D is such that the line DA is perpendicular to AB and DC is parallel to 

AB. Calculate the co-ordinates of D.

	

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 November 2007]

O

A(2, 14)

B(–2, 8)

C

D

y

x

O

A(3, 8)

B(6, 2) C(10, 2)

D
y

x
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13 In the diagram, the points A and C lie on the x and y axes respectively and 

the equation of AC is 2y + x = 16. The point B has co-ordinates (2, 2). The 

perpendicular from B to AC meets AC at the point X.

	

(i) Find the co-ordinates of X.

The point D is such that the quadrilateral ABCD has AC as a line of symmetry.

(ii) Find the co-ordinates of D.

(iii) Find, correct to 1 decimal place, the perimeter of ABCD.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q11 June 2008]

14 The diagram shows points A, B and C lying on the line 2y = x + 4. The point 

A lies on the y axis and AB = BC. The line from D(10, −3) to B is 

perpendicular to AC. Calculate the co-ordinates of B and C.

	

 

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q8 June 2009]

O

B(2, 2)

X

C

A

y

x

O

D(10, –3)

B

C

A

y

x
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Drawing curves

You can always plot a curve, point by point, if you know its equation. Often, 

however, all you need is a general idea of its shape and a sketch is quite sufficient.

Figures 2.25 and 2.26 show some common curves of the form y = xn for n = 1, 2, 

3 and 4 and y
xn= 1  for n = 1 and 2.

Curves of the form y = xn for n = 1, 2, 3 and 4

●? How are the curves for even values of n different from those for odd values of n? 

Stationary points

A turning point is a place where a curve changes from increasing (curve going 

up) to decreasing (curve going down), or vice versa. A turning�point may be 

described as a maximum (change from increasing to decreasing) or a minimum 

(change from decreasing to increasing). Turning points are examples of 

stationary�points, where the gradient is zero. In general, the curve of a polynomial 

of order n has up to n − 1 turning points as shown in figure 2.26.

x

y

y = x

O

x

y

y = x3

O

x

y y = x2

O

x

y y = x4

O

(c)  n = 3, y = x3

x

y

y = x

O

x

y

y = x3

O

x

y y = x2

O

x

y y = x4

O

(d)  n = 4, y = x4

Figure 2.25 

x

y

y = x

O

x

y

y = x3

O

x

y y = x2

O

x

y y = x4

O

x

y

y = x

O

x

y

y = x3

O

x

y y = x2

O

x

y y = x4

O

(b)  n = 2, y = x2(a)  n = 1, y = x
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There are some polynomials for which not all the stationary points materialise, as in 

the case of y = x4 − 4x3 + 5x2 (whose curve is shown in figure 2.27). To be accurate, 

you say that the curve of a polynomial of order n has at�most n − 1 stationary points.

x

y y = x4 – 4x3 + 5x2

O 2 31–1

4

8

12

16

Figure 2.27

–1 x

y
y = x3 – x

O 1

–1 x

y y = x4 – x2

O 1

x

y

y = –2x3 + 4x2 – 2x + 4

O 2

4

x

y y = –x4 + 5x2 – 4

O 1–1–2 2

–4

Figure 2.26 

A cubic (order 3) 
with two stationary 

points.

A quartic (order 4) 
with three turning 

points.

x

y y = x2

O
x

y

y = –x2 + 4x

O 4

a maximum point

A quadratic 
(order 2) with one 
stationary point.

a minimum 
point
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Behaviour for large x (positive and negative)

What can you say about the value of a polynomial for large positive values and 

large negative values of x? As an example, look at

f(x) = x3 + 2x2 + 3x + 9,

and take 1000 as a large number.

f(1000) = 1 000 000 000 + 2 000 000 + 3000 + 9

 = 1 002 003 009

Similarly,

f(−1000) = −1 000 000 000 + 2 000 000 − 3000 + 9

 = −998 002 991.

Note

1  The term x3 makes by far the largest contribution to the answers. It is the 

dominant�term. 

For a polynomial of order n, the term in xn is dominant as x → ± .

2  In both cases the answers are extremely large numbers. You will probably have 

noticed already that away from their turning points, polynomial curves quickly 

disappear off the top or bottom of the page.  

For all polynomials as x → ± , either f(x) → +  or f(x) → − . 

When investigating the behaviour of a polynomial of order n as x → ± , you 

need to look at the term in xn and ask two questions.

(i) Is n even or odd?

(ii) Is the coefficient of xn positive or negative?

According to the answers, the curve will have one of the four types of shape 

illustrated in figure 2.28.

Intersections with the x and y axes

The constant term in the polynomial gives the value of y where the curve 

intersects the y axis. So y = x8 + 5x6 + 17x3 + 23 crosses the y axis at the point 

(0, 23). Similarly, y = x3 + x crosses the y axis at (0, 0), the origin, since the 

constant term is zero.

When the polynomial is given, or known, in factorised form you can see at once 

where it crosses the x axis. The curve y = (x − 2)(x − 8)(x − 9), for example, crosses 

the x axis at x = 2, x = 8 and x = 9. Each of these values makes one of the brackets 

equal to zero, and so y = 0.
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EXAMPLE 2.13 Sketch the curve y = x3 − 3x2 − x + 3 = (x + 1) (x − 1) (x − 3).

SOLUTION

Since the polynomial is of order 3, the curve has up to two stationary points. The 

term in x3 has a positive coefficient (+1) and 3 is an odd number, so the general 

shape is as shown on the left of figure 2.29.

The actual equation 

y = x3 − 3x2 − x + 3 = (x + 1) (x − 1) (x −3)

tells you that the curve:

− crosses the y axis at (0, 3)

− crosses the x axis at (−1, 0), (1, 0) and (3, 0).

This is enough information to sketch the curve (see the right of figure 2.29).

x

y

y = x3 – 3x2 + x + 3

0 2 3 41–1–2

3

Figure 2.29

n even

coefficient of
xn positive

n odd

coefficient of
xn negative

Figure 2.28
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In this example the polynomial x3 − 3x2 − x + 3 has three factors, (x + 1), (x − 1) 

and (x − 3). Each of these corresponds to an intersection with the x axis, and to a 

root of the equation x3 − 3x2 − x + 3 = 0. Clearly a cubic polynomial cannot have 

more than three factors of this type, since the highest power of x is 3. A cubic 

polynomial may, however, cross the x axis fewer than three times, as in the case 

of f(x) = x3 − x2 − 4x + 6 (see figure 2.30).

Note

This illustrates an important result. If f(x) is a polynomial of degree n, the curve with 

equation y = f(x) crosses the x axis at most n times, and the equation f(x) = 0 has at 

most n roots.

An important case occurs when the polynomial function has one or more 

repeated factors, as in figure 2.31. In such cases the curves touch the x axis at 

points corresponding to the repeated roots.

x

f(x)
f(x) = x3 – x2 – 4x + 6

O

Figure 2.30

x

f(x)

O 4

f(x) = x2(x – 4)2

x

f(x)

O 1 3

f(x) = (x – 1)(x – 3)2

Figure 2.31
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EXERCISE 2E  �����Sketch the following curves, marking clearly the values of x and y where they 
cross the co-ordinate axes. 

1 y = x(x − 3)(x + 4) 2 y = (x + 1)(2x − 5)(x − 4)

3 y = (5 − x)(x − 1)(x + 3) 4 y = x2(x − 3)

5 y = (x + 1)2(2 − x) 6 y = (3x − 4)(4x − 3)2

7 y = (x + 2)2(x − 4)2 8 y = (x − 3)2(4 + x)2

9 Suggest an equation for this curve.

●? What happens to the curve of a polynomial if it has a factor of the form 

(x − a)3? Or (x − a)4?

Curves of the form y =  
1—
xn (for x ≠ 0)

The curves for n = 3, 5, … are not unlike that for n = 1, those for n = 4, 6, … are 

like that for n = 2. In all cases the point x = 0 is excluded because 10 is undefined.

x

y

0 2 31–1–2

4

x

y

y =

O

x

y

O

1
x2

1–x

y =   
x

y

y =

O

x

y

O

1
x2

1–x

y =   

Figure 2.32

(a)  n = 1, y = 
1
x (b)  n = 2, y = 

1
2x
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An important feature of these curves is that they approach both the x and the y 

axes ever more closely but never actually reach them. These lines are described as 

asymptotes to the curves. Asymptotes may be vertical (e.g. the y axis), horizontal, 

or lie at an angle, when they are called oblique. 

Asymptotes are usually marked on graphs as dotted lines but in the cases above 

the lines are already there, being co-ordinate axes. The curves have different 

branches which never meet. A curve with different branches is said to be 

discontinuous, whereas one with no breaks, like y = x2, is continuous.

The circle

You are of course familiar with the circle, and have probably done calculations 

involving its area and circumference. In this section you are introduced to the 

equation of a circle.

The circle is defined as the locus�of all the points in a plane which are at a fixed 

distance (the radius) from a given point (the centre). (Locus means path.)

As you have seen, the length of a line joining (x1, y1) to (x2, y2) is given by 

length = ( ) ( ) .x x y y2 1
2

2 1
2− + −

This is used to derive the equation of a circle.

In the case of a circle of radius 3, with its centre at the origin, any point (x, y) on 

the circumference is distance 3 from the origin. Since the distance of (x, y) from 

(0, 0) is given by ( ) ( )x y− + −0 02 2, this means that ( ) ( )x y− + −0 02 2 = 3 or 

x2 + y2 = 9 and this is the equation of the circle.

This circle is shown in figure 2.33.

These results can be generalised to give the equation of a circle centre (0, 0), 

radius r  as follows:

x2 + y2 = r2

x

y

O

3
y

x

(x, y)

x2 + y2 = 32

4 (y – 5)

(x – 9)(9, 5)

Figure 2.33 
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The intersection of a line and a curve

When a line and a curve are in the same plane, there are three possible situations.

(i) All�points�of�intersection�are�distinct (see figure 2.34).

(ii) The�line�is�a�tangent�to�the�curve�at�one�(or�more)�point(s) (see figure 2.35). 

In this case, each point of contact corresponds to two (or more) co-incident 
points of intersection. It is possible that the tangent will also intersect the curve 
somewhere else.

x x

y y

1

1

y = x2

y = x + 1

x + 4y = 4

(x – 4)2 + (y – 3)2 = 22

O O

Figure 2.34

x

x

y

y

y = 1

(–2, 8)

y = 2x + 12

y = x3 + x2 – 6x

(x – 4)2 + (y – 4)2 = 32

O

O
– 3 2

12

Figure 2.35
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(iii) The�line�and�the�curve�do�not�meet�(see figure 2.36).

The co-ordinates of the point of intersection can be found by solving the two 
equations simultaneously. If you obtain an equation with no real roots, the 
conclusion is that there is no point of intersection.

The equation of the straight line is, of course, linear and that of the curve 

non-linear. The examples which follow remind you how to solve such pairs of 

equations.

EXAMPLE 2.14 Find the co-ordinates of the two points where the line y − 3x = 2 intersects the 

curve y = 2x2.

SOLUTION 

First sketch the line and the curve.

	

x

y

y = x2

y = x – 5

O 5

–5

Figure 2.36

O

y – 3x = 2

y = 2x2

Figure 2.37
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You can find where the line and curve intersect by solving the simultaneous 

equations:

 y − 3x� = 2 1

and  y = 2x2  2

Make y the subject of 1  : y = 3x�+ 2 3

Substitute 3   into 2   :  y = 2x2 

 ⇒ 3x�+ 2 = 2x2   

 ⇒ 2x2 − 3x�− 2 = 0

 ⇒ (2x + 1)(x�– 2) = 0

⇒ x = 2 or x�= – 1
2
   

Substitute into the linear equation, y = 3x�+ 2, to find the corresponding y 

co-ordinates.

x = 2 ⇒ y = 8

x = – 1
2
 ⇒ y = 1

2

So the co-ordinates of the points of intersection are (2, 8) and (– 1
2
, 1

2)  

EXAMPLE 2.15 (i)  Find the value of k for which the line 2y = x + k forms a tangent to the curve 

y2 = 2x. 

(ii)  Hence, for this value of k, find the co-ordinates of the point where the line 2y 

= x + k meets the curve.

SOLUTION 

(i)  You can find where the line forms a tangent to the curve by solving the 

simultaneous equations:

  2y = x + k�  1 

 and  y2 = 2x   2  

When you eliminate either x or y between the equations you will be left with 

a quadratic equation. A tangent meets the curve at just one point and so you 

need to find the value of k�which gives you just one repeated root for the 

quadratic equation.

 Make x the subject of 1  : x  = 2y�− k  3 

 Substitute 3  into 2  : y2 = 2x 

 ⇒ y2	=	2(2y	−	k)			
 ⇒ y2	=	4y	−	2k

 ⇒ y2	−	4y	+	2k	=	0   4  

These are the x 
co-ordinates of the 

points of intersection.
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  You can use the discriminant, b2 – 4ac, to find the value of k such that the 

equation has one repeated root. The condition is b2 – 4ac�=	0 

� y2 − 4y + 2k = 0   ⇒ a = 1, b = −4 and c = 2k

� b2 − 4ac = 0 ⇒ (−4)2 − 4 × 1 × 2k = 0

   ⇒ 16 − 8k = 0

   ⇒ k�= 2

 So the line�2y = x + 2 forms a tangent to the curve y2 = 2x. 

(ii)  You have already started to solve the equations 2y = x + 2 and y2 = 2x in 

part (i). Look at equation 4   : y2 − 4y + 2k = 0 

 You know from part (i) that k = 2 so you can solve the quadratic to find y.

� y2 − 4y + 4 = 0

⇒ (y − 2)(y − 2) = 0

⇒ y = 2

 Notice that this is a repeated root so the line is a tangent to the curve.

 Now substitute y = 2 into the equation of the line to find the x co-ordinate.

 When y = 2: 2y = x + 2 ⇒ 4 = x + 2

� � x = 2

 So the tangent meets the curve at the point (2, 2).

EXERCISE 2F    1 �Show that the line y = 3x + 1 crosses the curve y = x2 + 3 at (1, 4) and find the 
co-ordinates of the other point of intersection.

2 (i)  Find the co-ordinates of the points A and B where the line y = 2x − 1 cuts 

the curve y = x2 − 4.

(ii) Find the distance AB.

3 (i)  Find the co-ordinates of the points of intersection of the line y = 2x and 

the curve y = x2 + 6x − 5. 

(ii) Show also that the line y = 2x does not cross the curve y = x2 + 6x + 5.

4 The line 3y = 5 − x intersects the curve 2y2 = x at two points. Find the distance 
between the two points.

5 The equation of a curve is xy = 8 and the equation of a line is 2x + y = k, where 

k is a constant. Find the values of k for which the line forms a tangent to the 

curve.

6 Find the value of the constant c for which the line y = 4x + c is a tangent to the 

curve y2 = 4x.
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7 �The equation of a curve is xy = 10 and the equation of a line l is 2x + y = q, 

where q is a number.

(i) In the case where q = 9, find the co-ordinates of the points of intersection 

of l and the curve.

(ii) Find the set of values of q for which l does not intersect the curve. 

8 The curve y2 = 12x intersects the line 3y = 4x + 6 at two points. Find the 

distance between the two points. 

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 June 2006]

9 Determine the set of values of the constant k for which the line y = 4x + k 

does not intersect the curve y = x2.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q1 November 2007]

10 Find the set of values of k for which the line y = kx − 4 intersects the curve 

y = x2 − 2x at two distinct points.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q2 June 2009]

KEY POINTS

1 The gradient of the straight line joining the points (x1, y1) and (x2, y2) is 

given by

gradient = 
y y

x x
2 1

2 1

–

–
.�����

 when the same scale is used on both axes, m = tan θ.

2 Two lines are parallel when their gradients are equal.

3 Two lines are perpendicular when the product of their gradients is −1.

4 When the points A and B have co-ordinates (x1, y1) and (x2, y2) respectively, 

then

the distance AB is  ( ) ( )x x y y2 1
2

2 1
2− + −

�����������
the mid-point of the line AB is 

x x y y1 2 1 2

2 2

+ +





, .
            

5 The equation of a straight line may take any of the following forms:

● line parallel to the y axis: x = a
● line parallel to the x axis: y = b
● line through the origin with gradient m: y = mx
● line through (0, c) with gradient m: y = mx + c
● line through (x1, y1) with gradient m: y − y1 = m(x − x1)
● line through (x1, y1) and (x2, y2):

 
y y

y y

x x

x x

y y

x x

y y

x x

–

–

–

–

–

–

–

–
.1

2 1

1

2 1

1

1

2 1

2 1
= =or
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Sequences and series

Population, when unchecked, increases in a geometrical ratio. 

Subsistence increases only in an arithmetical ratio. a slight 

acquaintance with numbers will show the immensity of the first 

power in comparison with the second.

Thomas�Malthus�(1798)

●? Each of the following sequences is related to one of the pictures above.

(i) 5000, 10 000, 20 000, 40 000, … .

(ii) 8, 0, 10, 10, 10, 10, 12, 8, 0, … .

(iii) 5, 3.5, 0, –3.5, –5, –3.5, 0, 3.5, 5, 3.5, … .

(iv) 20, 40, 60, 80, 100, … .

(a) Identify which sequence goes with which picture.

(b) Give the next few numbers in each sequence.

(c) Describe the pattern of the numbers in each case.

 (d) Decide whether the sequence will go on for ever, or come to a stop.

θ

3

ASIAN SAVINGS

DOUBLE
your $$
every

10 years
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Definitions and notation

A sequence is a set of numbers in a given order, like

1
2

1
4

1
8

1
16, , , , .…

Each of these numbers is called a term of the sequence. When writing the terms 

of a sequence algebraically, it is usual to denote the position of any term in the 

sequence by a subscript, so that a general sequence might be written:

u1, u2, u3, …, with general term uk.

For the sequence above, the first term is u1 = 12, the second term is u2 = 14, and 

so on.

When the terms of a sequence are added together, like

1
2

1
4

1
8

1
16+ + + +…

the resulting sum is called a series. The process of adding the terms together is 

called summation and indicated by the symbol ∑  (the Greek letter sigma), with 

the position of the first and last terms involved given as limits.

So u1 + u2 + u3 + u4 + u5 is written uk
k

k

=

=

∑
1

5

 or uk
k=
∑

1

5

.

In cases like this one, where there is no possibility of confusion, the sum would 

normally be written more simply as uk
1

5

∑ . 

If all the terms were to be summed, it would usually be denoted even more simply, 

as uk
k
∑ , or even  uk∑ .

A sequence may have an infinite number of terms, in which case it is called an 

infinite sequence. The corresponding series is called an infinite series. 

In mathematics, although the word series can describe the sum of the terms of 

any sequence, it is usually used only when summing the sequence provides some 

useful or interesting overall result. 

For example:

(1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5

π = + −( ) + −( ) + −( ) +…








2 3 1 1

3
5 1

3
7 1

3

2 3

The phrase ‘sum of a sequence’ is often used to mean the sum of the terms of a 

sequence (i.e. the series).

This series has a finite 
number of terms (6).

This series has an 
infinite number  

of terms.
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arithmetic progressions

Any ordered set of numbers, like the scores of this golfer on an 18-hole round 

(see figure 3.1) form a sequence. In mathematics, we are particularly interested 

in those which have a well-defined pattern, often in the form of an algebraic 

formula linking the terms. The sequences you met at the start of this chapter 

show various types of pattern.

A sequence in which the terms increase by the addition of a fixed amount (or 

decrease by the subtraction of a fixed amount), is described as arithmetic. The 

increase from one term to the next is called the common difference.

Thus the sequence  5    8    11   14…  is arithmetic with

                                   +3   +3   +3     

common difference 3.

This sequence can be written algebraically as

uk = 2 + 3k for k = 1, 2, 3, …

When k = 1, u1 = 2 + 3 = 5

 k = 2, u2 = 2 + 6 = 8

 k = 3, u3 = 2 + 9 = 11

and so on.                                                   

(An equivalent way of writing this is uk = 5 + 3(k − 1) for k = 1, 2, 3, … .)

As successive terms of an arithmetic sequence increase (or decrease) by a fixed 

amount called the common difference, d, you can define each term in the 

sequence in relation to the previous term:

uk+1 = uk + d.

When the terms of an arithmetic sequence are added together, the sum is called 

an arithmetic progression, often abbreviated to A.P. An alternative name is an 

arithmetic series.

Figure 3.1

) ) )

This version has the 
advantage that the right-hand 
side begins with the first term 

of the sequence.
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Notation

When describing arithmetic progressions and sequences in this book, the 

following conventions will be used:

●● first term, u1 = a

●● number of terms = n

●● last term, un = l

●● common difference = d

●● the general term, uk, is that in position k (i.e. the k th term).

Thus in the arithmetic sequence 5, 7, 9, 11, 13, 15, 17,

a = 5, l = 17, d = 2 and n = 7.

The terms are formed as follows.

u1 = a = 5

u2 = a + d = 5 + 2 = 7

u3 = a + 2d = 5 + 2 × 2 = 9

u4 = a + 3d = 5 + 3 × 2 = 11

u5 = a + 4d = 5 + 4 × 2 = 13

u6 = a + 5d = 5 + 5 × 2 = 15

u7 = a + 6d = 5 + 6 × 2 = 17

You can see that any term is given by the first term plus a number of differences. 

The number of differences is, in each case, one less than the number of the term. 

You can express this mathematically as

uk = a + (k − 1)d.

For the last term, this becomes

l = a + (n − 1)d.

These are both general formulae which apply to any arithmetic sequence.

ExamPlE 3.1 Find the 17th term in the arithmetic sequence 12, 9, 6, … .

SOlUTION

In this case a = 12 and d = −3.

Using uk = a + (k − 1)d, you obtain

 u17 = 12 + (17 − 1) × (− 3)

  = 12 − 48

  = −36.

The 17th term is −36.

The 7th term is the 1st 
term (5) plus six times the 

common difference (2).
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ExamPlE 3.2 How many terms are there in the sequence 11, 15, 19, …, 643?

SOlUTION

This is an arithmetic sequence with first term a = 11, last term l = 643 and 

common difference d = 4.

Using the result l = a + (n − 1)d, you have

  643 = 11 + 4(n − 1)

	 ⇒ 4n = 643 − 11 + 4

	 ⇒ n = 159.

There are 159 terms.

Note

The relationship l = a + (n − 1)d may be rearranged to give

 n = +I a
d
– 1

This gives the number of terms in an A.P. directly if you know the first term, the last 

term and the common difference.

The sum of the terms of an arithmetic progression

When Carl Friederich Gauss (1777−1855) was at school he was always quick to 

answer mathematics questions. One day his teacher, hoping for half an hour of 

peace and quiet, told his class to add up all the whole numbers from 1 to 100. 

Almost at once the 10-year-old Gauss announced that he had done it and that the 

answer was 5050.

Gauss had not of course added the terms one by one. Instead he wrote the series 

down twice, once in the given order and once backwards, and added the two 

together:

S =   1 +   2 +   3 + … +  98 +  99 + 100

S = 100 +  99 +  98 + … +   3 +   2 +   1.

Adding, 2S = 101 + 101 + 101 + … + 101 + 101 + 101.

Since there are 100 terms in the series,

2S = 101 × 100

  S = 5050.

The numbers 1, 2, 3, … , 100 form an arithmetic sequence with common difference 

1. Gauss’ method can be used for finding the sum of any arithmetic series.

It is common to use the letter S to denote the sum of a series. When there is any 

doubt as to the number of terms that are being summed, this is indicated by a 

subscript: S5 indicates five terms, Sn indicates n terms.
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ExamPlE 3.3 Find the value of 8 + 6 + 4 + … + (−32).

SOlUTION

This is an arithmetic progression, with common difference −2. The number of 

terms, n, may be calculated using

n l a
d

= +– 1

n = +– –
–

32 8
2

1

 = 21.

The sum S of the progression is then found as follows.

 S =     8 +  6 + … − 30 − 32

 S = −32 – 30 − … +  6 +  8

 2S = −24 − 24 − … − 24 − 24

Since there are 21 terms, this gives 2S = −24 × 21, so S = −12 × 21 = −252.

Generalising this method by writing the series in the conventional notation gives:

 Sn = [a] + [a + d] + … + [a + (n − 2)d] + [a + (n − 1)d]

 Sn = [a + (n − 1)d] + [a + (n − 2)d] + … + [a + d] +  [a]

 2Sn = [2a + (n − 1)d] + [2a + (n − 1)d] + … + [2a + (n − 1)d] + [2a + (n − 1)d]

Since there are n terms, it follows that

S n a n dn = + −( )[ ]1
2

2 1

This result may also be written as

S n a ln = +1
2

( ).

ExamPlE 3.4 Find the sum of the first 100 terms of the progression

1 1 1 11
4

1
2

3
4, , , , .…

SOlUTION

In this arithmetic progression

a = 1, d = 1
4  and n = 100.

Using S n a n dn = +[ ]1
2

2 1( – ) , you have

Sn = × + ×( )1
2

1
4

100 2 99

 = 13371
2.
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ExamPlE 3.5 Jamila starts a part-time job on a salary of $9000 per year, and this increases by 

an annual increment of $1000. Assuming that, apart from the increment, Jamila’s 

salary does not increase, find

(i) her salary in the 12th year

(ii) the length of time she has been working when her total earnings are $100 000.

SOlUTION

Jamila’s annual salaries (in dollars) form the arithmetic sequence

9000, 10 000, 11 000, … .

with first term a = 9000, and common difference d = 1000.

(i) Her salary in the 12th year is calculated using:

    uk = a + (k − 1)d

⇒ u12 = 9000 + (12 − 1) × 1000

  = 20 000.

(ii) The number of years that have elapsed when her total earnings are $100 000 

is given by:

 S n a n d= +[ ]1
2 2 1( – )

where S = 100 000, a = 9000 and d = 1000.

This gives 100 000 = 12 2 9000 1000 1n n× +[ ]( – ) .

This simplifies to the quadratic equation:

n2 + 17n  − 200 = 0.

Factorising,

(n − 8)(n + 25) = 0

⇒  n = 8 or n = −25.

The root n = −25 is irrelevant, so the answer is n = 8.

Jamila has earned a total of $100 000 after eight years.

ExERCISE 3a  1 Are the following sequences arithmetic? 

  If so, state the common difference and the seventh term.

(i) 27, 29, 31, 33, … (ii) 1, 2, 3, 5, 8, … (iii) 2, 4, 8, 16, …

(iv) 3, 7, 11, 15, … (v) 8, 6, 4, 2, …

2 The first term of an arithmetic sequence is −8 and the common difference is 3.

(i) Find the seventh term of the sequence.

(ii) The last term of the sequence is 100. 

How many terms are there in the sequence?



S
e
q

u
e
n

c
e
s 

a
n

d
 s

e
ri

e
s

82

P1 

3

3  The first term of an arithmetic sequence is 12, the seventh term is 36 and the 
last term is 144.

(i) Find the common difference.

(ii) Find how many terms there are in the sequence.

4 There are 20 terms in an arithmetic progression.  
The first term is −5 and the last term is 90.

(i) Find the common difference.

(ii) Find the sum of the terms in the progression.

5 The kth term of an arithmetic progression is given by

uk = 14 + 2k.

(i) Write down the first three terms of the progression.

(ii) Calculate the sum of the first 12 terms of this progression.

6 Below is an arithmetic progression.

120 + 114 + … + 36

(i) How many terms are there in the progression?

(ii) What is the sum of the terms in the progression?

7 The fifth term of an arithmetic progression is 28 and the tenth term is 58.

(i) Find the first term and the common difference.

(ii) The sum of all the terms in this progression is 444. 
How many terms are there?

8 The sixth term of an arithmetic progression is twice the third term, and the 
first term is 3. The sequence has ten terms.

(i) Find the common difference.

(ii) Find the sum of all the terms in the progression.

9 (i) Find the sum of all the odd numbers between 50 and 150.

(ii) Find the sum of all the even numbers from 50 to 150, inclusive.

(iii) Find the sum of the terms of the arithmetic sequence with first term 50, 
common difference 1 and 101 terms.

(iv) Explain the relationship between your answers to parts (i), (ii) and (iii).

10 The first term of an arithmetic progression is 3000 and the tenth term is 1200.

(i) Find the sum of the first 20 terms of the progression.

(ii) After how many terms does the sum of the progression become negative?

11 An arithmetic progression has first term 7 and common difference 3.

(i) Write down a formula for the kth term of the progression. 
Which term of the progression equals 73?

(ii) Write down a formula for the sum of the first n terms of the progression. 
How many terms of the progression are required to give a sum equal to 

6300?  [MEI]



E
x
e
rc

ise
 3

a

83

P1 

3

12   Paul’s starting salary in a company is $14 000 and during the time he stays 
with the company it increases by $500 each year.

(i) What is his salary in his sixth year?

(ii) How many years has Paul been working for the company when his total 
earnings for all his years there are $126 000?

13 A jogger is training for a 10 km charity run. He starts with a run of 400 m; 
then he increases the distance he runs by 200 m each day.

(i) How many days does it take the jogger to reach a distance of 10 km 
in training?

(ii) What total distance will he have run in training by then?

14 A piece of string 10 m long is to be cut into pieces, so that the lengths of the 
pieces form an arithmetic sequence.

(i) The lengths of the longest and shortest pieces are 1 m and 25 cm 
respectively; how many pieces are there?

(ii) If the same string had been cut into 20 pieces with lengths that formed 
an arithmetic sequence, and if the length of the second longest had been 
92.5 cm, how long would the shortest piece have been?

15 The 11th term of an arithmetic progression is 25 and the sum of the first 4 
terms is 49.

(i) Find the first term of the progression and the common difference.

 The nth term of the progression is 49.

(ii) Find the value of n.

16 The first term of an arithmetic progression is 6 and the fifth term is 12. The 

progression has n terms and the sum of all the terms is 90. Find the value of n.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q3 November 2008]

17 The training programme of a pilot requires him to fly ‘circuits’ of an airfield. 
Each day he flies 3 more circuits than the day before. On the fifth day he flew 
14 circuits.

Calculate how many circuits he flew:
(i) on the first day

(ii) in total by the end of the fifth day

(iii) in total by the end of the nth day

(iv) in total from the end of the nth day to the end of the 2nth day. Simplify 
your answer.  

 [MEI]
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18   As part of a fund-raising campaign, I have 
been given some books of raffle tickets to sell. 
Each book has the same number of tickets 
and all the tickets I have been given are 
numbered in sequence. The number of the 
ticket on the front of the 5th book is 205 and 
that on the front of the 19th book is 373.

(i) By writing the number of the ticket on the front of the first book as a 
and the number of tickets in each book as d, write down two equations 
involving a and d. 

(ii) From these two equations find how many tickets are in each book and 
the number on the front of the first book I have been given.

(iii) The last ticket I have been given is numbered 492.
  How many books have I been given?    
    [MEI]

Geometric progressions

A human being begins life as one cell, which divides into two, then four… .

The terms of a geometric sequence are formed by multiplying one term by a fixed 

number, the common ratio, to obtain the next. This can be written inductively as:

uk+1 = ruk  with first term u1.

The sum of the terms of a geometric sequence is called a geometric progression, 

shortened to G.P. An alternative name is a geometric series.

Notation

When describing geometric sequences in this book, the following conventions 

are used:

●● first term u1 = a

●● common ratio = r

207206

Geometric progressions

Figure 3.2
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●● number of terms = n

●● the general term uk is that in position k (i.e. the kth term).

Thus in the geometric sequence 3, 6, 12, 24, 48,

a = 3, r = 2 and n = 5.

The terms of this sequence are formed as follows.

u1 = a  = 3

u2 = a  × r = 3 × 2  = 6

u3 = a  × r 2 = 3 × 22 = 12

u4 = a  × r 3 = 3 × 23 = 24

u5 = a  × r 4 = 3 × 24 = 48

You will see that in each case the power of r is one less than the number of the 

term: u5 = ar 4 and 4 is one less than 5. This can be written deductively as

uk = ark–1,

and the last term is

un = arn–1.

These are both general formulae which apply to any geometric sequence.

Given two consecutive terms of a geometric sequence, you can always find 

the common ratio by dividing the later term by the earlier. For example, the 

geometric sequence … 5, 8, … has common ratio r = 8
5.

ExamPlE 3.6 Find the seventh term in the geometric sequence 8, 24, 72, 216, … .

SOlUTION

In the sequence, the first term a = 8 and the common ratio r = 3.

The kth term of a geometric sequence is given by uk = ark–1,

and so u7 =  8 × 36

  = 5832.

ExamPlE 3.7 How many terms are there in the geometric sequence 4, 12, 36, … , 708 588?

SOlUTION

Since it is a geometric sequence and the first two terms are 4 and 12, you can 

immediately write down 

First term:  a = 4

Common ratio: r = 3 
12  –– 
4
  = 3
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The third term allows you to check you are right. 

 12 × 3 = 36 ✓

The nth term of a geometric sequence is ar n–1, so in this case

 4 × 3n–1 = 708 588

Dividing through by 4 gives

       3n–1 = 177 147

You can use logarithms to solve an equation like this, but since you know that 

n is a whole number it is just as easy to work out the powers of 3 until you come 

to 177 147. 

They go 31 = 3, 32 = 9, 33 = 27, 34 = 81, … 

and before long you come to 311 = 177 147. 

So n – 1 = 11 and n = 12.

There are 12 terms in the sequence.

●? How would you use a spreadsheet to solve the equation 3n–1 = 177 147?

The sum of the terms of a geometric progression

The origins of chess are obscure, with several countries claiming the credit for 

its invention. One story is that it came from China. It is said that its inventor 

presented the game to the Emperor, who was so impressed that he asked the 

inventor what he would like as a reward.

‘One grain of rice for the first square on the board, two for the second, four for 

the third, eight for the fourth, and so on up to the last square’, came the answer.

The Emperor agreed, but it soon became clear that there was not enough rice in 

the whole of China to give the inventor his reward.

How many grains of rice was the inventor actually asking for?

The answer is the geometric series with 64 terms and common ratio 2:

1 + 2 + 4 + 8 + … + 263.

This can be summed as follows.

Call the series S:

S = 1 + 2 + 4 + 8 + … + 263. 1

You will learn about 
these in P2 and P3.

You can do this by 
hand or you can use 

your calculator.
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Now multiply it by the common ratio, 2:

2S = 2 + 4 + 8 + 16 + … + 264. 2

      Then subtract 1   from 2  

2  2S =    2 + 4 + 8 + 16 + … + 263 + 264

1   S =  1 + 2 + 4 + 8 + … + 263

subtracting: S = –1 + 0 + 0 + 0 + … + 264.

The total number of rice grains requested was therefore 264 − 1 (which is about 

1.85 × 1019).

●? How many tonnes of rice is this, and how many tonnes would you expect there 

to be in China at any time?

 (One hundred grains of rice weigh about 2 grammes. The world annual 

production of all cereals is about 1.8 × 109 tonnes.)

Note

The method shown above can be used to sum any geometric progression.

ExamPlE 3.8 Find the value of  0.2 + 1 + 5 + … + 390 625.

SOlUTION

This is a geometric progression with common ratio 5.

Let S = 0.2 + 1 + 5 + … + 390 625.   1 

Multiplying by the common ratio, 5, gives:

 5S = 1 + 5 + 25 + … + 390 625 + 1 953 125. 2 

Subtracting 1   from 2 :

 5S =   1 + 5 + 25 + … + 390 625 + 1 953 125

 S =   0.2 +  1 + 5 + 25 + … + 390 625

 4S = −0.2 + 0 + … + 0 + 1 953 125

This gives 4S = 1 953 124.8

⇒ S = 488 281.2.
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The same method can be applied to the general geometric progression to give a 

formula for its value:

 Sn = a + ar + ar2 + … + arn–1.   1  

Multiplying by the common ratio, r, gives:

 rSn = ar + ar2 + ar3 + … + arn.   2

Subtracting 1   from 2 , as before, gives:

 (r − 1)Sn = –a + arn

  = a(rn − 1)

so Sn = a r
r

n( )
( )

−
−

1
1

 .

This can also be written as:

     
S a r

rn

n
= ( – )

( – )
1
1

.

Infinite geometric progressions

The progression 1 1
2

1
4

1
8

1
16+ + + + +… is geometric, with common ratio 

1
2.

Summing the terms one by one gives 1 1 1 1 11
2

3
4

7
8

15
16, , , , .…

Clearly the more terms you take, the nearer the sum gets to 2. In the limit, as the 

number of terms tends to infinity, the sum tends to 2.

As n → ∞, Sn → 2.

This is an example of a convergent series. The sum to infinity is a finite number. 

You can see this by substituting a = 1 and r = 
1
2  in the formula for the sum of the 

series:

  
S

a r

rn

n

= ( )1

1

–

–

giving    

       
= × ( )( )2 1 1

2
–

n
.

The larger the number of terms, n, the smaller 1
2( )n becomes and so the nearer Sn 

is to the limiting value of 2 (see figure 3.3). Notice that 1
2( )n can never be negative, 

however large n becomes; so Sn can never exceed 2.

Sn

n

=
× ( )( )
( )

1 1

1

1
2

1
2

–

–
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In the general geometric series a + ar + ar2 + …  the terms become progressively 

smaller in size if the common ratio r is between −1 and 1. This was the case 

above: r had the value 12. In such cases, the geometric series is convergent.

If, on the other hand, the value of r is greater than 1 (or less than −1) the terms in 

the series become larger and larger in size and so the series is described as divergent. 

A series corresponding to a value of r of exactly +1 consists of the first term a 

repeated over and over again. A sequence corresponding to a value of r of exactly 

−1 oscillates between +a and −a. Neither of these is convergent.

It only makes sense to talk about the sum of an infinite series if it is convergent. 

Otherwise the sum is undefined.

The condition for a geometric series to converge, −1 < r < 1, ensures that as 

n → ∞, rn → 0, and so the formula for the sum of a geometric series:

S a r
rn

n
= ( – )

( – )
1
1

may be rewritten for an infinite series as:

S a
r∞=

1 –
.

ExamPlE 3.9 Find the sum of the terms of the infinite progression 0.2, 0.02, 0.002, … .

SOlUTION

This is a geometric progression with a = 0.2 and r = 0.1.

Its sum is given by

S∞ 

1

2

1

6 T
H
E

L
I
M
I
T

n

s

5

4

3

2

1

1

1

21–21

1–2

1–2

1–8
1–16

1–4

1

3–4

7–8
1

1

1

31––32
15––16

1

Figure 3.3
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=

=
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.
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Note

You may have noticed that the sum of the series 0.2 + 0.02 + 0.002 + … is 0.2̇, and 

that this recurring decimal is indeed the same as 29.

ExamPlE 3.10 The first three terms of an infinite geometric progression are 16, 12 and 9.

(i) Write down the common ratio.

(ii) Find the sum of the terms of the progression.

SOlUTION

(i) The common ratio is 
3
4.

(ii) The sum of the terms of an infinite geometric progression is given by:

 
S a

r∞=
1 – .

 In this case a = 16 and r = 34, so:

 
S∞= =16

1
64

3
4–

.

●? A paradox

Consider the following arguments.

(i)  S = 1 − 2 + 4 − 8 + 16 − 32 + 64 − …

⇒	 S = 1 − 2(1 − 2 + 4 − 8 + 16 − 32 + …)

  = 1 − 2S

⇒	3S = 1

⇒    S = 1
3.

(ii)  S = 1 + (−2 + 4) + (−8 + 16) + (−32 + 64) + …

⇒   S = 1 + 2 + 8 + 32 + …

So S diverges towards +∞.

(iii)  S = (1 − 2) + (4 − 8) + (16 − 32) + …

⇒ S = –1 − 4 − 8 − 16 …

So S diverges towards −∞.

 What is the sum of the series: 1
3, +∞, −∞, or something else?
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ExERCISE 3B  1 Are the following sequences geometric? 

  If so, state the common ratio and calculate the seventh term.

(i) 5, 10, 20, 40, … (ii) 2, 4, 6, 8, …

(iii) 1, −1, 1, −1, … (iv) 5, 5, 5, 5, …

(v) 6, 3, 0, −3, …  (vi) 6, 3, 11
2

3
4

, ,…
(vii) 1, 1.1, 1.11, 1.111, …

2 A geometric sequence has first term 3 and common ratio 2.  

The sequence has eight terms.

(i) Find the last term.

(ii) Find the sum of the terms in the sequence.

3 The first term of a geometric sequence of positive terms is 5 and the fifth term 

is 1280.

(i) Find the common ratio of the sequence.

(ii) Find the eighth term of the sequence.

4 A geometric sequence has first term 19 and common ratio 3.

(i) Find the fifth term.

(ii) Which is the first term of the sequence which exceeds 1000?

5 (i) Find how many terms there are in the geometric sequence 8, 16, …, 2048.

(ii) Find the sum of the terms in this sequence.

6 �(i) Find how many terms there are in the geometric sequence 

200, 50, …, 0.195 312 5.

(ii) Find the sum of the terms in this sequence.

7 The fifth term of a geometric progression is 48 and the ninth term is 768.  

All the terms are positive.

(i) Find the common ratio.

(ii) Find the first term.

(iii) Find the sum of the first ten terms.

8 The first three terms of an infinite geometric progression are 4, 2 and 1.

(i) State the common ratio of this progression.

(ii) Calculate the sum to infinity of its terms.

9 The first three terms of an infinite geometric progression are 0.7, 0.07, 0.007.

(i) Write down the common ratio for this progression.

(ii) Find, as a fraction, the sum to infinity of the terms of this progression.

(iii) Find the sum to infinity of the geometric progression 0.7 − 0.07 + 0.007 − …, 

and hence show that 7
11 = 0.6·3· .
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10  The first three terms of a geometric sequence are 100, 90 and 81.

(i) Write down the common ratio of the sequence.

(ii) Which is the position of the first term in the sequence that has a value 

less than 1?

(iii) Find the sum to infinity of the terms of this sequence.

(iv) After how many terms is the sum of the sequence greater than 99% of the 

sum to infinity?

11 A geometric progression has first term 4 and its sum to infinity is 5.

(i) Find the common ratio.

(ii) Find the sum to infinity if the first term is excluded from the progression.

12 (i) The third term of a geometric progression is 16 and the fourth term is 

12.8. Find the common ratio and the first term.

(ii) The sum of the first n terms of a geometric progression is 2(2n + 1) − 2. 
Find the first term and the common ratio.  [MEI]

13 (i) The first two terms of a geometric series are 3 and 4. Find the third term. 

(ii) Given that x, 4, x + 6 are consecutive terms of a geometric series, find:

(a) the possible values of x

(b) the corresponding values of the common ratio of the geometric series.

(iii) Given that x, 4, x + 6 are the sixth, seventh and eighth terms of a 

geometric series and that the sum to infinity of the series exists, find:

(a) the first term

(b) the sum to infinity.  [MEI]

14 The first four terms in an infinite geometric series are 54, 18, 6, 2.

(i) What is the common ratio r?

(ii) Write down an expression for the nth term of the series.

(iii) Find the sum of the first n terms of the series.

(iv) Find the sum to infinity.

(v) How many terms are needed for the sum to be greater than 80.999?

15 A tank is filled with 20 litres of water. Half the water is removed and replaced 

with anti-freeze and thoroughly mixed. Half this mixture is then removed 

and replaced with anti-freeze. The process continues.

(i) Find the first five terms in the sequence of amounts of water in the tank 

at each stage.

(ii) Find the first five terms in the sequence of amounts of anti-freeze in the 

tank at each stage.

(iii) Is either of these sequences geometric? Explain.
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16 A pendulum is set swinging. Its first oscillation is through an angle of 30°, and 

each succeeding oscillation is through 95% of the angle of the one before it.

(i) After how many swings is the angle through which it swings less than 1°?

(ii) What is the total angle it has swung through at the end of its tenth 

oscillation?

17 A ball is thrown vertically upwards from the ground. It rises to a height of  

10 m and then falls and bounces. After each bounce it rises vertically to 23 of 

the height from which it fell.

(i) Find the height to which the ball bounces after the nth impact with the 

ground.

(ii) Find the total distance travelled by the ball from the first throw to the 

tenth impact with the ground.

18 The first three terms of an arithmetic sequence, a, a + d and a + 2d, are the 
same as the first three terms, a, ar, ar2, of a geometric sequence (a ≠ 0).

 Show that this is only possible if r = 1 and d = 0.

19 The first term of a geometric progression is 81 and the fourth term is 24. Find

(i) the common ratio of the progression

(ii) the sum to infinity of the progression.

 The second and third terms of this geometric progression are the first and 
fourth terms respectively of an arithmetic progression.

(iii) Find the sum of the first ten terms of the arithmetic progression.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q7 June 2008]

20 A progression has a second term of 96 and a fourth term of 54. Find the first 
term of the progression in each of the following cases:

(i) the progression is arithmetic

(ii) the progression is geometric with a positive common ratio.

 [Cambridge AS & A Level Mathematics 9709, Paper 12 Q3 November 2009]

21 (i) Find the sum to infinity of the geometric progression with first three 

terms 0.5, 0.53 and 0.55.

(ii) The first two terms in an arithmetic progression are 5 and 9. The last 

term in the progression is the only term which is greater than 200. Find 

the sum of all the terms in the progression.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q7 June 2009]
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22 The 1st term of an arithmetic progression is a and the common difference is 

d, where d ≠ 0.

(i) Write down expressions, in terms of a and d, for the 5th term and the 

15th term.

 The 1st term, the 5th term and the 15th term of the arithmetic progression 

are the first three terms of a geometric progression.

(ii) Show that 3a = 8d.

(iii) Find the common ratio of the geometric progression.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 November 2007]

INvESTIGaTIONS

Snowflakes

Draw an equilateral triangle with sides 9 cm long.  

Trisect each side and construct equilateral triangles on the middle section of each 

side as shown in diagram (b). 

Repeat the procedure for each of the small triangles as shown in (c) and (d) so that 

you have the first four stages in an infinite sequence.

Calculate the length of the perimeter of the figure for each of the first six steps, 

starting with the original equilateral triangle.

What happens to the length of the perimeter as the number of steps increases?

Does the area of the figure increase without limit?

Achilles and the tortoise

Achilles (it is said) once had a race with a tortoise. The tortoise started 100 m 

ahead of Achilles and moved at 1
10  ms–1 compared to Achilles’ speed of 10 ms–1.

Achilles ran to where the tortoise started only to see that it had moved 1 m fur-

ther on. So he ran on to that spot but again the tortoise had moved further on, 

this time by 0.01 m. This happened again and again: whenever Achilles got to the 

spot where the tortoise was, it had moved on. Did Achilles ever manage to catch 

the tortoise?

(a) (c) (d) (b) 

Figure 3.4
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Binomial expansions

A special type of series is produced when a binomial (i.e. two-part) expression 

like (x + 1) is raised to a power. The resulting expression is often called a 

binomial expansion.

The simplest binomial expansion is (x + 1) itself. This and other powers of 

(x + 1) are given below.

(x + 1)1 =     1x  +  1

(x + 1)2 =    1x2 + 2x + 1

(x + 1)3 =   1x3 + 3x2 + 3x + 1

(x + 1)4 =  1x4  + 4x3 + 6x2 + 4x + 1

(x + 1)5 = 1x5 + 5x4 + 10x3 + 10x2 + 5x + 1

If you look at the coefficients on the right-hand side above you will see that they 

form a pattern.

      (1)
     1  1   
    1  2  1
   1  3  3  1
  1  4  6  4  1
 1  5  10  10  5  1

This is called Pascal’s triangle, or the Chinese triangle. Each number is obtained by 

adding the two above it, for example

  4 + 6

 gives  10

This pattern of coefficients is very useful. It enables you to write down the 

expansions of other binomial expressions. For example,

 (x + y) =   1x  +  1y

 (x + y)2 =   1x2 + 2xy + 1y2   

 (x + y)3 =  1x3 + 3x2y + 3xy2 + 1y3

ExamPlE 3.11 Write out the binomial expansion of (x + 2)4.

SOlUTION

The binomial coefficients for power 4 are  1  4  6  4  1.

In each term, the sum of the powers of x and 2 must equal 4.

So the expansion is

 1 × x4 + 4 × x3 × 2 + 6 × x2 × 22 + 4 × x × 23 + 1 × 24

i.e. x4 + 8x3 + 24x2 + 32x + 16.

Expressions like these, 
consisting of integer 

powers of x and constants 
are called polynomials.

These numbers are called 
binomial coefficients.

Notice how in each term 
the sum of the powers of 
x and y is the same as the 

power of (x + y).

These numbers are called 
binomial coefficients.

This is a binomial expression.
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ExamPlE 3.12 Write out the binomial expansion of (2a − 3b)5.

SOlUTION

The binomial coefficients for power 5 are  1  5  10  10  5  1.

The expression (2a − 3b) is treated as (2a + (−3b)).

So the expansion is

 1 × (2a)5 + 5 × (2a)4 × (–3b) + 10 × (2a)3 × (–3b)2 + 10 × (2a)2 × (–3b)3 

  + 5 × (2a) × (–3b)4 + 1 × (–3b)5

i.e.  32a5 − 240a4b + 720a3b2 − 1080a2b3 + 810ab4 − 243b5.

Historical note Blaise Pascal has been described as the greatest might-have-been in the history of 

mathematics. Born in France in 1623, he was making discoveries in geometry by the 

age of 16 and had developed the first computing machine before he was 20.

Pascal suffered from poor health and religious anxiety, so that for periods of his life 

he gave up mathematics in favour of religious contemplation. The second of these 

periods was brought on when he was riding in his carriage: his runaway horses 

dashed over the parapet of a bridge, and he was only saved by the miraculous 

breaking of the traces. He took this to be a sign of God’s disapproval of his 

mathematical work. A few years later a toothache subsided when he was thinking 

about geometry and this, he decided, was God’s way of telling him to return to 

mathematics.

Pascal’s triangle (and the binomial theorem) had actually been discovered by 

Chinese mathematicians several centuries earlier, and can be found in the works of 

Yang Hui (around 1270 a.d.) and Chu Shi-kie (in 1303 a.d.). Pascal is remembered 

for his application of the triangle to elementary probability, and for his study of the 

relationships between binomial coefficients.

Pascal died at the early age of 39.

Tables of binomial coefficients

Values of binomial coefficients can be found in books of tables. It is helpful 

to use these when the power becomes large, since writing out Pascal’s triangle 

becomes progressively longer and more tedious, row by row.

ExamPlE 3.13 Write out the full expansion of (x + y)10.

SOlUTION

The binomial coefficients for the power 10 can be found from tables to be

1  10  45  120  210  252  210  120  45  10  1
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and so the expansion is

x10 + 10x9y + 45x8y2 + 120x7y3 + 210x6y4 + 252x5y5 + 210x4y6 + 120x3y7 

 + 45x2y8 + 10xy9 + y10.

!  As the numbers are symmetrical about the middle number, tables do not always 

give the complete row of numbers.

The formula for a binomial coefficient

There will be times when you need to find binomial coefficients that are 

outside the range of your tables. The tables may, for example, list the binomial 

coefficients for powers up to 20. What happens if you need to find the coefficient 

of x17 in the expansion of (x + 2)25? Clearly you need a formula that gives 

binomial coefficients.

The first thing you need is a notation for identifying binomial coefficients. It is 

usual to denote the power of the binomial expression by n, and the position in 

the row of binomial coefficients by r, where r can take any value from 0 to n. So 

for row 5 of Pascal’s triangle

n = 5: 1 5 10 10 5 1

 r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

The general binomial coefficient corresponding to values of n and r is 

written as n
r







. An alternative notation is nCr, which is said as ‘N C R’. 

Thus 5
3







 

= 5C3 = 10.

The next step is to find a formula for the general binomial coefficient n
r







. 

However, to do this you must be familiar with the term factorial.

The quantity ‘8 factorial’, written 8!, is

8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40 320.

Similarly, 12! = 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 479 001 600,

and n! = n × (n − 1) × (n − 2) × … × 1, where n is a positive integer.

!  Note that 0! is defined to be 1. You will see the need for this when you use the 

 formula for n
r







.

There are 10 + 1 = 11 terms.
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aCTIvITy 3.1 The table shows an alternative way of laying out Pascal’s triangle.

Column (r)

0 1 2 3 4 5 6 … r

1 1 1

Row 

(n) 

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

… … … … … … … … …

… … … … … … … … … …

n 1 n ? ? ? ? ? ? ?

Show that n
r







 = n
r n r

!
!( )!−  

, by following the procedure below.

The numbers in column 0 are all 1.

To find each number in column 1 you multiply the 1 in column 0 by the row 

number, n.

(i) Find, in terms of n, what you must multiply each number in column 1 by to 

find the corresponding number in column 2.

(ii) Repeat the process to find the relationship between each number in column 2 

and the corresponding one in column 3.

(iii) Show that repeating the process leads to

n
r

n n n n r
r






= − − … − +

× × ×…×
( )( ) ( )1 2 1

1 2 3  
for r  1.

(iv) Show that this can also be written as

n
r

n
r n r






= −

!
!( )!

 and that it is also true for r = 0.

ExamPlE 3.14 Use the formula n
r

n
r n r






= −( )

!
! !

 to calculate these.

(i) 5
0







 (ii) 
5
1





  (iii) 

5
2





  

(iv) 5
3







 (v) 
5
4





  (vi) 5

5
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SOlUTION

(i) 5
0

5
0 5 0

120
1 120

1





= − = × =!

!( )!

(ii) 5
1

5
1 4

120
1 24

5





= = × =!

! !

(iii) 5
2

5
2 3

120
2 6

10





= = × =!

! !

(iv) 5
3

5
3 2

120
6 2

10





= = × =!

! !

(v) 5
4

5
4 1

120
24 1

5





= = × =!

! !

(vi) 5
5

5
5 0

120
120 1

1





= = × =!

! !

Note

You can see that these numbers, 1, 5, 10, 10, 5, 1, are row 5 of Pascal’s triangle.

 Most scientific calculators have factorial buttons, e.g. 
x! . Many also have nCr

 buttons. Find out how best to use your calculator to find binomial coefficients, as 

well as practising non-calculator methods.

ExamPlE 3.15 Find the coefficient of x17 in the expansion of (x + 2)25.

SOlUTION

(x + 2)25 = 25
0







 x25 + 
25
1





  x24

 21 + 
25
2





  x23

 22 + … + 25
8







 x17
 28 + … 25

25







 225

So the required term is 25
8







 × 28 × x17

25
8

25
8 17

25 24 23 22 21 20 19 18 17
8






= = × × × × × × × ×!

! !
!

!! !× 17

	 = 1 081 575.                          

So the coefficient of x17 is 1 081 575 × 28 = 276 883 200.

Note

Notice how 17! was cancelled in working out 25
8







. Factorials become large numbers 

very quickly and you should keep a look-out for such opportunities to simplify  

calculations.



S
e
q

u
e
n

c
e
s 

a
n

d
 s

e
ri

e
s

100

P1 

3

The expansion of (1 + x)n

When deriving the result for n
r







 you found the binomial coefficients in the 

form

1 n n n n n n n n n n( – )
!

( – )( – )
!

( – )( – )( – )
!

1
2

1 2
3

1 2 3
4

…

This form is commonly used in the expansion of expressions of the type (1 + x)n.

( ) ( – ) ( – )( – ) ( –1 1 1
1 2

1 2
1 2 3

2 3
+ = + + × + × × +x nx n n x n n n x n nn 11 2 3

1 2 3 4

4)( – )( – )n n x
× × × +…

+ × + +n n x nx xn n n( – ) – –1
1 2

12 1

ExamPlE 3.16 Use the binomial expansion to write down the first four terms, in ascending 

powers of x, of (1 + x)9.

SOlUTION

( )1 1 9 9 8
1 2

9 8 7
1 2 3

9 2 3+ = + + ×
× + × ×

× × +…x x x x

	 =	1 +	9x + 36x2 +	84x3 + … 

The expression 1 + 9x + 36x2 + 84x3 ... is said to be in ascending powers of x, 

because the powers of x are increasing from one term to the next.

An expression like x9 + 9x8 + 36x7 + 84x6 ... is in descending powers of x, because 

the powers of x are decreasing from one term to the next.

ExamPlE 3.17 Use the binomial expansion to write down the first four terms, in ascending 

powers of x, of (1 − 3x)7. Simplify the terms.

SOlUTION

Think of (1 − 3x)7 as (1 + (−3x))7. Keep the brackets while you write out the terms.

( (– )) (– ) (– ) (–1 3 1 7 3 7 6
1 2

3 7 6 5
1 2 3

37 2+ = + + ×
× + × ×

× ×x x x x))3 +…

	 = 1 – 21x + 189x2 – 945x3 + …

The power of x is 
the same as the 
largest number 

underneath.

Two numbers on top, 
two underneath. Three numbers on top, 

three underneath.

Note how the signs 
alternate.
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ExamPlE 3.18 The first three terms in the expansion of ax b

x
+( )6 where a  0, in descending

powers of x, are 64x6 – 576x4 + cx2. Find the values of a, b and c.

SOlUTION 

Find the first three terms in the expansion in terms of a and b:

ax b
x

ax ax b
x

+( ) = 



 ( ) + 



 ( ) ( ) + 


6

6 56
0

6
1

6
2

( ) ( )
= + +

ax b
x

a x a bx a b x

4
2

6 6 5 4 4 2 26 15

So a6x6 + 6a5bx4 + 15a4b2x2 = 64x6 − 576x4 + cx2  

Compare the coefficients of x6: a6 = 64 ⇒ a = 2

Compare the coefficients of x4: 6a5b = −576

Since a = 2 then 192b = −576 ⇒ b = −3

Compare the coefficients of x2: 15a4b2 = c

Since  a = 2 and b = −3 then c = 15 × 24 × (–3)2 ⇒ c = 2160

●? A Pascal puzzle

1.12 = 1.21    1.13 = 1.331    1.14 = 1.4641

What is 1.15?

 What is the connection between your results and the coefficients in Pascal’s 

triangle?

Relationships between binomial coefficients

There are several useful relationships between binomial coefficients.

Symmetry

Because Pascal’s triangle is symmetrical about its middle, it follows that 

n
r

n
n r






=

−






.

x
x

x4
2

21× =

Remember both  
26 = 64 and (–2)6 = 64, 
but as a > 0 then a = 2.
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Adding terms

You have seen that each term in Pascal’s triangle is formed by adding the two 

above it. This is written formally as

n
r

n
r

n
r






+

+





= +

+




1

1
1

.

Sum of terms

You have seen that

(x + y)n = n
0







 xn + n
1







 xn–1y + n
2







 xn–2 y2 + … + n
n







 yn

Substituting x = y = 1 gives

2n = n
0







 + n
1







 + n
2







 + … + n
n







 .

Thus the sum of the binomial coefficients for power n is 2n.

The binomial theorem and its applications

The binomial expansions covered in the last few pages can be stated formally as 

the binomial theorem for positive integer powers:

( ) ,–a b n
r

a b n n
r

n n r r

r

n

+ = 





∈ 



=

+∑
0

for where == −( ) =n
r n r

!
! !

! .and 0 1

Note

Notice the use of the summation symbol, Σ. The right-hand side of the statement 

reads ‘the sum of n
r





  an–rbr for values of r from 0 to n’. 

It therefore means

n
0





 an + n

1




 an–1b + n

2




 an–2b2 + … + n

k




an–kbk + … + n

n




 bn.

  r = 0          r�= 1             r = 2                       r = k                r = n

The binomial theorem is used on other types of expansion and it has applications 

in many areas of mathematics.

The binomial distribution

In some situations involving repetitions of trials with two possible outcomes, the 

probabilities of the various possible results are given by the terms of a binomial 

expansion. This is covered in Probability and Statistics 1.

Selections

The number of ways of selecting r objects from n (all different) is given by n
r







. 

This is also covered in Probability and Statistics 1.
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ExERCISE 3C  1 Write out the following binomial expansions.

(i) (x + 1)4 (ii) (1 + x)7 (iii) (x + 2)5

(iv) (2x + 1)6 (v) (2x − 3)4 (vi) (2x + 3y)3

(vii) x
x

−( )2
3

 (viii) x
x

+( )2
2

4

 (ix) 3 22
5

x
x

−( )
2 Use a non-calculator method to calculate the following binomial coefficients. 

Check your answers using your calculator’s shortest method.

(i) 4
2







 (ii) 6
2







 (iii) 6
3







(iv) 6
4







 (v) 6
0







 (vi) 12
9







3 In these expansions, find the coefficient of these terms.

(i) x5 in (1 + x)8 (ii) x4 in (1 − x)10 (iii) x6 in (1 + 3x)12

(iv) x7 in (1 − 2x)15 (v) x2 in x
x

2
10

2+( )  

4 (i) Simplify (1 + x)3 − (1 − x)3.

(ii) Show that a3 − b3 = (a − b)(a2 + ab + b2).

(iii) Substitute a = 1 + x and b = 1 − x in the result in part (ii) and show that 

your answer is the same as that for part (i).

5 Find the first three terms, in descending powers of x, in the expansion 

of  2 2
4

x
x

−( ) .

6 Find the first three terms, in ascending powers of x, in the expansion (2 + kx)6. 

7 (i) Find the first three terms, in ascending powers of x, in the expansion 

(1 − 2x)6. 

(ii) Hence find the coefficients of x and x2 in the expansion of (4 − x)(2 − 4x)6.

8 (i) Find the first three terms, in descending powers of x, in the expansion 

 4
2

6

x k
x

−( ) .

(ii) Given that the value of the term in the expansion which is independent of 

x is 240, find possible values of k.

9 (i)  Find the first three terms, in descending powers of x, in the expansion of  

 x
x

2
6

1−( ) .

(ii) Find the coefficient of x3 in the expansion of  x
x

2
6

1−( ) .
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10 (i)  Find the first three terms, in descending powers of x, in the expansion 

  of  x x−( )2 5
.

(ii) Hence find the coefficient of x in the expansion of  4 1 2
2

5

+( ) −( )x
x

x
.

11 (i) Show that (2 + x)4 = 16 + 32x + 24x2 + 8x3 + x4 for all x.

(ii) Find the values of x for which (2 + x)4 = 16 + 16x + x4. 
 [MEI]

12 The first three terms in the expansion of (2 + ax)n, in ascending powers of x, 

are 32 − 40x + bx2. Find the values of the constants n, a and b. 

    [Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 June 2006]

13 (i) Find the first three terms in the expansion of (2 – x)6 in ascending 

powers of x.

(ii) Find the value of k for which there is no term in x2 in the expansion of 

(1 + kx)(2 − x)6.

 [Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 June 2005]

14 (i)  Find the first three terms in the expansion of (1 + ax)5 in ascending 

powers of x.

(ii) Given that there is no term in x in the expansion of (1 − 2x)(1 + ax)5, 

find the value of the constant a.

(iii) For this value of a, find the coefficient of x2 in the expansion of (1 − 2x)

(1 + ax)5.
 [Cambridge AS & A Level Mathematics 9709, Paper 12 Q6 June 2010]

INvESTIGaTIONS

Routes to victory

In a recent soccer match, Juventus beat Manchester United 2–1.  
What could the half-time score have been?

(i) How many different possible half-time scores are there if the final score is 
2–1?  How many if the final score is 4–3?

(ii) How many different ‘routes’ are there to any final score? For example, for the 
above match, putting Juventus’ score first, the sequence could be:

 0–0 → 0–1 → 1–1 → 2–1
or 0–0 → 1–0 → 1–1 → 2–1
or 0–0 → 1–0 → 2–0 → 2–1.

So in this case there are three routes.

Investigate the number of routes that exist to any final score (up to a maximum 

of five goals for either team).  

Draw up a table of your results. Is there a pattern?
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Cubes

A cube is painted red. It is then cut up into a 
number of identical cubes, as in figure 3.5.

How many of the cubes have the following 
numbers of faces painted red?

(i) 3    (ii) 2    (iii) 1    (iv) 0 

In figure 3.5 there are 125 cubes but your 

answer should cover all possible cases. Figure 3.5

KEy POINTS

1 A sequence is an ordered set of numbers, u1, u2, u3, …, uk, … un, where uk 

is the general term.

2 In an arithmetic sequence, uk+1 = uk + d where d is a fixed number called 

the common difference.

3 In a geometric sequence, uk+1 = ruk where r is a fixed number called the 

common ratio.

4 For an arithmetic progression with first term a, common difference d and n 

terms:

● the kth term uk = a + (k − 1)d

● the last term l = a + (n − 1)d

●● the sum of the terms = 12
1
2 2 1n a l n a n d( ) ( – )+ = +[ ].

5 For a geometric progression with first term a, common ratio r and n terms:

● the kth term uk = ar k–1

● the last term an = ar n–1

● the sum of the terms = a r
r

a r
r

n n( – )
( – )

( – )
( – )

1
1

1
1

= .

  6 For an infinite geometric series to converge, −1  r  1.

 In this case the sum of all the terms is given by 
a

r( – )1
.

7 Binomial coefficients, denoted by 
n
r







 

or

 

nCr, can be found
● using Pascal’s triangle
● using tables
● using the formula n

r
n

r n r





= −( )

!
! !

.

8 The binomial expansion of (1 + x)n may also be written

 ( ) ( – )
!

( – )( – )
!

–1 1 1
2

1 2
3

2 3 1+ = + + + +…+ +x nx n n x n n n x nxn n xxn .
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Functions

Still glides the stream and shall forever glide; 

The form remains, the function never dies.

William Wordsworth

Why fly to Geneva in January?

Several people arriving at Geneva airport from London were asked the main 

purpose of their visit. Their answers were recorded.

 David

 Joanne Skiing

 Jonathan Returning home 

 Louise 
To study abroad

 Paul 
Business

 Shamaila

 Karen

This is an example of a mapping.

The language of functions

A mapping is any rule which associates two sets of items. In this example, each of 
the names on the left is an object, or input, and each of the reasons on the right is 
an image, or output.

For a mapping to make sense or to have any practical application, the inputs and 
outputs must each form a natural collection or set. The set of possible inputs (in 
this case, all of the people who flew to Geneva from London in January) is called 
the domain of the mapping. 

The seven people questioned in this example gave a set of four reasons, or 
outputs. These form the range of the mapping for this particular set of inputs.

Notice that Jonathan, Louise and Karen are all visiting Geneva on business: each 
person gave only one reason for the trip, but the same reason was given by several 
people. This mapping is said to be many-to-one. A mapping can also be one-to-
one, one-to-many or many-to-many. The relationship between the people from 
any country and their passport numbers will be one-to-one. The relationship 
between the people and their items of luggage is likely to be one-to-many, and 
that between the people and the countries they have visited in the last 10 years 
will be many-to-many.

4
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Mappings

In mathematics, many (but not all) mappings can be expressed using algebra. 

Here are some examples of mathematical mappings.

(a)	 Domain: integers Range

 Objects Images

 −1 3

  0 5

  1 7 

  2 9

  3 11

 General rule:  x 2x + 5

(b) 	 Domain: integers Range

 Objects Images

  1.9

 2 2.1

  2.33

  2.52

 3 2.99

  π

 General rule: Rounded whole numbers   Unrounded numbers

(c) 	 Domain: real numbers Range

  Objects Images

  0

  45 0

  90 0.707

  135 1

  180

 General rule: x° sin x°

(d)  Domain: quadratic  Range
 equations with real roots

  Objects Images

  x2 − 4x + 3 = 0 0
  x2 − x = 0 1
  x2 − 3x + 2 = 0 2
   3

 General rule: ax2 + bx + c = 0 x b b ac
a

= – – –2 4
2

   x b b ac
a

= +– –2 4
2
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●? For each of the examples above:

(i) decide whether the mapping is one-to-one, many-to-many, one-to-many or 

many-to-one

  (ii) take a different set of inputs and identify the corresponding range.

Functions

Mappings which are one-to-one or many-to-one are of particular importance, 

since in these cases there is only one possible image for any object. Mappings 

of these types are called functions. For example, x    x2 and x   cos x  are both 

functions, because in each case for any value of x there is only one possible 

answer. By contrast, the mapping of rounded whole numbers (objects) on to 

unrounded numbers (images) is not a function, since, for example, the rounded 

number 5 could map on to any unrounded number between 4.5 and 5.5.

There are several different but equivalent ways of writing a function. For 

example, the function which maps the real numbers, x, on to x2 can be written in 

any of the following ways.

	● y = x2 x ∈

	● f(x) = x2 x ∈

	● f : x  x2  x ∈

To define a function you need to specify a suitable domain. For example,  

you cannot choose a domain of x ∈ (all the real numbers) for the function 

f : x  x − 5 because when, say, x = 3, you would be trying to take the square 

root of a negative number; so you need to define the function as f : x   x − 5 

for x  5, so that the function is valid for all values in its domain.

Likewise, when choosing a suitable domain for the function g : x   1
5x − , you 

need to remember that division by 0 is undefined and therefore you cannot input 

x = 5. So the function g is defined as g : x  1
5x − , x ≠ 5.

It is often helpful to represent a function graphically, as in the following example, 

which also illustrates the importance of knowing the domain.

This is a short way  
of writing ‘x is a 

real number’. 

Read this as  
‘f maps x on to x2’.
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ExaMPlE 4.1  Sketch the graph of y = 3x + 2 when the domain of x is

(i) x ∈   

(ii) x ∈ +   

(iii) x ∈ .

SOlUTION

(i) When the domain is , all values of y are possible. The range is therefore , also.

(ii)  When x is restricted to positive values, all the values of y are greater than 2, 

so the range is y  2.

(iii)  In this case the range is the set of points {2, 5, 8, …}. These are clearly all of 

the form 3x + 2 where x is a natural number (0, 1, 2, …). This set can be 

written neatly as {3x + 2 : x ∈ }.

When you draw the graph of a mapping, the x co-ordinate of each point is an 

input value, the y co-ordinate is the corresponding output value. The table below 

shows this for the mapping x   x2, or y = x2, and figure 4.2 shows the resulting 

points on a graph.

Input (x) Output (y) Point plotted

−2 4 (−2, 4)

−1 1 (−1, 1)

0 0 (0, 0)

1 1 (1, 1)

2 4 (2, 4)

If the mapping is a function, there is one and only one value of y for every value 

of x in the domain. Consequently the graph of a function is a simple curve or line 

going from left to right, with no doubling back.

This means x is a 
positive real number.

This means x is a natural 
number, i.e. a positive 

integer or zero.

y

xO

y

xO

y

xO

y = 3x + 2, x ∈ y = 3x + 2, x ∈ + y = 3x + 2, x ∈ 

y

xO

y

xO

y

xO

y = 3x + 2, x ∈ y = 3x + 2, x ∈ + y = 3x + 2, x ∈ 

Figure 4.1

The open circle 
shows that (0, 2) is 
not part of the line.

y

x00 1

1

2

3

4

–1–2 2

Figure 4.2
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Figure 4.3 illustrates some different types of mapping. The graphs in (a) and (b) 

illustrate functions, those in (c) and (d) do not.

ExERCISE 4a   1   Describe each of the following mappings as either one-to-one, many-to-one, 

one-to-many or many-to-many, and say whether it represents a function.  

y

y = 2x + 1

xO

y

y = ±2x

xO

–1

1

y y = x3 – x

x
–1

O 1

y

x–5

–5

5

5O

y = ±     25 – x2

(a) One-to-one (b) Many-to-one

(c) One-to-many (d) Many-to-many

Figure 4.3

domain: –5  x  5

(i) 

(iii)  (iv) 

(vi) 

(vii) 

(ii) 

(v) 

(viii) 
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2   For each of the following mappings:

(a)  write down a few examples of inputs and corresponding outputs

(b)  state the type of mapping (one-to-one, many-to-one, etc.)

(c)  suggest a suitable domain.

(i)  Words  number of letters they contain

(ii)  Side of a square in cm  its perimeter in cm

(iii)  Natural numbers  the number of factors (including 1 and the number 
itself)

(iv)  x  2x − 5

(v)  x   x

(vi)  The volume of a sphere in cm3  its radius in cm

(vii)  The volume of a cylinder in cm3  its height in cm

(viii)  The length of a side of a regular hexagon in cm  its area in cm2

(ix)  x  x2

3  (i)  A function is defined by f(x) = 2x − 5, x ∈ . Write down the values of
(a) f(0)  (b) f(7) (c) f(−3).

(ii)  A function is defined by g:(polygons)  (number of sides). What are

(a) g(triangle) (b) g(pentagon) (c)  g(decagon)?

(iii) The function t maps Celsius temperatures on to Fahrenheit temperatures.

  It is defined by t: C  9
5
C + 32, C ∈ . Find

(a) t(0) (b) t(28) (c) t(−10) 
(d)  the value of C when t(C) = C.

4  Find the range of each of the following functions.  
(You may find it helpful to draw the graph first.)

(i)  f(x) = 2 − 3x x  0

(ii)  f(θ) = sin θ 0°  θ  180°

(iii)  y = x2 + 2 x ∈ {0, 1, 2, 3, 4}

(iv)  y = tan θ 0°  θ  90°

(v)  f : x  3x − 5 x ∈ 

(vi)  f : x  2x  x ∈ {−1, 0, 1, 2}

(vii)  y = cos x  −90°
 
 x  90°

(viii)  f : x  x3 − 4 x ∈ 

(ix)  f(x) = 
1

1 2+ x  x ∈ 

(x)  f(x) =  x − +3 3 x  3

5  The mapping f is defined by f(x) = x2 0  x  3
 f(x) = 3x 3  x  10.

The mapping g is defined by g(x) = x2 0  x  2

 g(x) = 3x 2  x  10.

Explain why f is a function and g is not.



F
u

n
c
ti

o
n

s

112

P1 

4

Composite functions

It is possible to combine functions in several different ways, and you have already 

met some of these. For example, if f(x) = x 2 and g(x) = 2x, then you could write

f(x) + g(x) = x 2 + 2x.

In this example, two functions are added.

Similarly if f(x) = x and g(x) = sin x, then

f(x).g(x) = x sin x.

In this example, two functions are multiplied.

Sometimes you need to apply one function and then apply another to the answer. 

You are then creating a composite function or a function of a function.

ExaMPlE 4.2  A new mother is bathing her baby for the first time. She takes the temperature 

of the bath water with a thermometer which reads in Celsius, but then has to 

convert the temperature to degrees Fahrenheit to apply the rule that her own 

mother taught her:

 At one o five

 He’ll cook alive

 But ninety four

 is rather raw.

Write down the two functions that are involved, and apply them to readings of

(i) 30°C (ii) 38°C (iii) 45°C.

SOlUTION

The first function converts the Celsius temperature C into a Fahrenheit 

temperature, F.

F = 
9
5
C

 + 32

The second function maps Fahrenheit temperatures on to the state of the bath.

 F  94 too cold

94  F  105 all right

 F  105 too hot

This gives

(i) 30°C  86°F    too cold

(ii) 38°C  100.4°F    all right

(iii) 45°C  113°C      too hot.



C
o

m
p

o
site

 fu
n

c
tio

n
s

113

P1 

4

In this case the composite function would be (to the nearest degree)

 C  34°C too cold

35°C  C  40°C all right

 C  41°C too hot.

In algebraic terms, a composite function is constructed as

Input x  
f  

Output f(x)

 Input f(x)  
g   

Output g[f(x)]  (or gf(x)).

Thus the composite function gf(x) should be performed from right to left: start 

with x then apply f and then g.

Notation

To indicate that f is being applied twice in succession, you could write ff(x) but 

you would usually use f2(x) instead. Similarly g3(x) means three applications of g.

In order to apply a function repeatedly its range must be completely contained 

within its domain.

Order of functions

If f is the rule ‘square the input value’ and g is the rule ‘add 1’, then

x      
f       

x 2      
g  

x 2 + 1.
            square    add 1

So gf(x) = x 2 + 1.

Notice that gf(x) is not the same as fg(x), since for fg(x) you must apply g first. In 

the example above, this would give:

x     
g   

     (x + 1)      
f  

    (x + 1)2

             add 1             square

and so fg(x) = (x + 1)2.

Clearly this is not the same result.

Figure 4.4 illustrates the relationship between the domains and ranges of the 

functions f and g, and the range of the composite function gf.

gf

range of fdomain of f range of gf

domain of g

gf

Figure 4.4

Read this as 
‘g of f of x’.
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Notice the range of f must be completely contained within the domain of g. 

If this wasn’t the case you wouldn’t be able to form the composite function gf 

because you would be trying to input values into g that weren’t in its domain.

For example, consider these functions f and g.

f : x   2x, x  0

g : x    x , x  0

The composite function gf can be formed: 

x      
f       

2x          
g       

  2x
              × 2    square root

and so gf : x   2x , x  0

Now think about a different function h.

h : x   2x, x ∈

This function looks like f but h has a different domain; it is all the real numbers 

whereas f was restricted to positive numbers. The range of h is also all real 

numbers and so it includes negative numbers, which are not in the domain of g. 

So you cannot form the composite function gh. If you tried, h would input 

negative numbers into g and you cannot take the square root of a negative number.

ExaMPlE 4.3  The functions f, g and h are defined by:

f(x) = 2x for x ∈, g(x) = x 2 for x ∈, h(x) = 1
x  

for x ∈, x ≠ 0.

Find the following.

(i) fg(x) (ii) gf(x) (iii) gh(x)  

(iv) f 2(x) (v) fgh(x) 

SOlUTION

(i) fg(x)  = f[g(x)] (ii) gf(x) = g[f(x)]

 = f(x2)   = g(2x)

 = 2x2   = (2x)2

     = 4x2

(iii) gh(x)  = g[h(x)] (iv) f 2(x) = f[f(x)]  

 = g 1
x( )   = f(2x)

 = 
1

2x
   

= 2(2x)

     
= 4x

(v) fgh(x) = f[gh(x)] 

 = f 
1

2x( ) using (iii)    

 = 
2

2x    

You need this restriction so 
you are not taking the square 

root of a negative number.
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Inverse functions

Look at the mapping x  x + 2 with domain the set of integers.

Domain Range

 …  …
 … …
 −1 −1
  0  0
  1  1
  2  2
 …  3
 …  4
      x    x + 2

The mapping is clearly a function, since for every input there is one and only one 

output, the number that is two greater than that input.

This mapping can also be seen in reverse. In that case, each number maps on to 

the number two less than itself: x  x − 2. The reverse mapping is also a function 

because for any input there is one and only one output. The reverse mapping is 

called the inverse function, f−1.

Function: f  : x  x + 2 x ∈ .

Inverse function: f−1 : x  x − 2 x ∈ .

For a mapping to be a function which also has an inverse function, every object 

in the domain must have one and only one image in the range, and vice versa. 

This can only be the case if the mapping is one-to-one.

So the condition for a function f to have an inverse function is that, over the given 

domain, f represents a one-to-one mapping. This is a common situation, and 

many inverse functions are self-evident as in the following examples, for all of 

which the domain is the real numbers.

f : x  x − 1;   f−1 : x  x + 1

g : x  2x;   g−1 : x  1
2

x

h : x  x 3;   h−1 : x   x3

●? Some of the following mappings are functions which have inverse functions, and 

others are not.

(a) Decide which mappings fall into each category, and for those which do not 

have inverse functions, explain why.

(b) For those which have inverse functions, how can the functions and their 

inverses be written down algebraically?

This is a short way of 
writing x is an integer.
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(i) Temperature measured in Celsius  temperature measured in Fahrenheit.

(ii) Marks in an examination  grade awarded.

(iii) Distance measured in light years  distance measured in metres.

(iv) Number of stops travelled on the London Underground  fare.

You can decide whether an algebraic mapping is a function, and whether it has 

an inverse function, by looking at its graph. The curve or line representing a one-

to-one function does not double back on itself and has no turning points. The x 

values cover the full domain and the y values give the range. Figure 4.5 illustrates 

the functions f, g and h given on the previous page. 

Now look at f(x) = x2 for x ∈  (figure 4.6). You can see that there are two 

distinct input values giving the same output: for example f(2) = f(−2) = 4. When 

you want to reverse the effect of the function, you have a mapping which for a 

single input of 4 gives two outputs, −2 and +2. Such a mapping is not a function.

You can make a new function, g(x) = x2 by restricting the domain to + (the set 

of positive real numbers). This is shown in figure 4.7. The function g(x) is a 

one-to-one function and its inverse is given by g−1(x) = x  since the sign  

means ‘the positive square root of ’.

y

xO

y y

x xO O
–1

1

y = f(x) y = g(x) y = h(x)

Figure 4.5

f(x) f(x) = x2

4

2–2 O x

Figure 4.6
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It is often helpful to define a function with a restricted domain so that its inverse 

is also a function. When you use the inv sin (i.e. sin–1 or arcsin) key on your 

calculator the answer is restricted to the range –90° to 90°, and is described as  

the principal value. Although there are infinitely many roots of the equation 

sin x = 0.5 (…, –330°, –210°, 30°, 150°, …), only one of these, 30°, lies in the 

restricted range and this is the value your calculator will give you.

The graph of a function and its inverse

aCTIvITy 4.1  For each of the following functions, work out the inverse function, and draw the 

graphs of both the original and the inverse on the same axes, using the same scale 

on both axes.

(i) f(x) = x2, x ∈+ (ii) f(x) = 2x, x ∈

(iii)  f(x) = x + 2, x ∈ (iv) f(x) = x3 + 2, x ∈

Look at your graphs and see if there is any pattern emerging.

Try out a few more functions of your own to check your ideas.

Make a conjecture about the relationship between the graph of a function and  

its inverse.

You have probably realised by now that the graph of the inverse function is the 

same shape as that of the function, but reflected in the line y = x. To see why this 

is so, think of a function f(x) mapping a on to b; (a, b) is clearly a point on the 

graph of f(x). The inverse function f−1(x), maps b on to a and so (b, a) is a point 

on the graph of f−1(x).

The point (b, a) is the reflection of the point (a, b) in the line y = x. This is shown 

for a number of points in figure 4.8.

Figure 4.7

y

O x

g(x) = x2, x      + ∈ 

Single output value

Single input value
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This result can be used to obtain a sketch of the inverse function without having 

to find its equation, provided that the sketch of the original function uses the 

same scale on both axes.

Finding the algebraic form of the inverse function

To find the algebraic form of the inverse of a function f(x), you should start by 

changing notation and writing it in the form y = … .

Since the graph of the inverse function is the reflection of the graph of the original 

function in the line y = x , it follows that you may find its equation by interchanging 

y and x in the equation of the original function. You will then need to make y the 

subject of your new equation. This procedure is illustrated in Example 4.4.

ExaMPlE 4.4  Find f−1(x) when f(x) = 2x + 1, x ∈.

SOlUTION

The function f(x) is given by y = 2x + 1

Interchanging x and y gives x = 2y + 1

Rearranging to make y the subject: y = 
x – 1

2

So  f−1(x) = 
x − 1

2 , x ∈

Sometimes the domain of the function f will not include the whole of . When 

any real numbers are excluded from the domain of f, it follows that they will be 

excluded from the range of f−1, and vice versa.

x

y

A(0, 4)

A�(4, 0)

B�(1, –1)

B(–1, 1)

C(–4, 2)

C�(2, –4)

y = x

Figure 4.8

f

domain of f and
range of f–1

range of f
and domain of f–1

f–1

Figure 4.9
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ExaMPlE 4.5  Find f−1(x) when f(x) = 2x − 3 and the domain of f is x  4.

SOlUTION

 Domain Range

Function: y = 2x − 3 x  4 y  5

Inverse function: x = 2y − 3    x  5 y  4

Rearranging the inverse function to make y the subject:      y = x + 3
2

.

The full definition of the inverse function is therefore:

f−1(x) = x + 3
2

 for x  5.

You can see in figure 4.10 that the inverse function is the reflection of a restricted 

part of the line y = 2x − 3.

ExaMPlE 4.6  (i) Find f−1(x) when f(x) = x 2 + 2,  x  0.

(ii) Find f(7) and f−1f(7). What do you notice?

SOlUTION

(i)   Domain Range

 Function: y = x 2 + 2 x  0 y  2

 Inverse function: x = y 2 + 2 x  2 y  0

Rearranging the inverse function to make y its subject:      y 2 = x − 2.

This gives y = ± x − 2, but since you know the range of the inverse function 

to be y  0 you can write:

y = + x − 2  or just y = x − 2.

y

O x

y = x
y = f(x)

y = f–1(x)
(4, 5)

(5, 4)

Figure 4.10
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The full definition of the inverse function 

is therefore:

f−1(x) = x − 2 for x  2.

The function and its inverse function are  

shown in figure 4.11.

(ii)  f(7) = 7 2 + 2 = 51

 f−1f(7) = f −1(51) =  51 2 7− =

Applying the function followed by its inverse brings you back to the original 

input value.

Note

Part (ii) of Example 4.6 illustrates an important general result. For any function f(x) 

with an inverse f−1(x), f−1f(x) = x. Similarly ff−1(x) = x. The effects of a function and its 

inverse can be thought of as cancelling each other out.

ExERCISE 4B   1   The functions f, g and h are defined for x ∈ by f(x) = x3, g(x) = 2x and 
h(x) = x + 2. Find each of the following, in terms of x.

(i)  fg (ii) gf (iii) fh (iv) hf (v) fgh 

(vi)  ghf (vii) g2 (viii) (fh)2 (ix) h2

2  Find the inverses of the following functions.

(i)  f(x) = 2x + 7, x ∈ (ii) f(x) = 4 − x, x ∈

(iii)  f(x) = 4
2 – x

, x ≠ 2 (iv) f(x) = x2 − 3, x  0

3  The function f is defined by f(x) = (x − 2)2 + 3 for x  2.

(i)  Sketch the graph of f(x).

(ii)  On the same axes, sketch the graph of f−1(x) without finding its equation.

4  Express the following in terms of the functions f: x   x  and g: x  x + 4 for 

x  0.

(i)  x  x + 4 (ii) x   x + 8

(iii) x  x + 8 (iv) x  x + 4

5  A function f is defined by:

f: x   
1
x                    x ∈ , x ≠ 0.

Find (i) f 2(x) (ii) f 3(x) (iii) f−1(x) (iv) f 999(x).

y

O
x

f–1 (x) =    x – 2 for x ≥ 2.

y = f(x)

y = f–1(x)

y = x

Figure 4.11
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6  �(i)  Show that x2 + 4x + 7 = (x + 2)2 + a, where a is to be determined.

(ii)  Sketch the graph of y = x2 + 4x + 7, giving the equation of its axis of 

symmetry and the co-ordinates of its vertex.

The function f is defined by f: x  x2 + 4x + 7 with domain the set of all real 

numbers.

(iii) Find the range of f.

(iv)  Explain, with reference to your sketch, why f has no inverse with its given 

domain. Suggest a domain for f for which it has an inverse. 
  [MEI]

7  The function f is defined by f : x  4x3 + 3, x  ∈ .

Give the corresponding definition of f−1.

State the relationship between the graphs of f and f−1.  
 [UCLES]

8  Two functions are defined for x  ∈  as f(x) = x 2 and g(x) = x 2 + 4x − 1.

(i)  Find a and b so that g(x) = f(x + a) + b.

(ii)  Show how the graph of y = g(x) is related to the graph of y = f(x) and 

sketch the graph of y = g(x).

(iii) State the range of the function g(x).

(iv)  State the least value of c so that g(x) is one-to-one for x  c.

(v)  With this restriction, sketch g(x) and g−1(x) on the same axes.

9  The functions f and g are defined for x  ∈  by 

f : x  4x − 2x2;  

g : x  5x + 3.   

(i)  Find the range of f.

(ii)  Find the value of the constant k for which the equation gf(x) = k has 

equal roots.
  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q3 June 2010]

10  Functions f and g are defined by

f : x  k – x for x ∈, where k is a constant,

g : x  9
2x +  

for x ∈, x ≠ –2.

(i)  Find the values of k for which the equation f(x) = g(x) has two equal 

roots and solve the equation f(x) = g(x) in these cases.

(ii)  Solve the equation fg(x) = 5 when k = 6.

(iii) Express g–1(x) in terms of x.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q11 June 2006]
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11  The function f is defined by f : x  2x2 – 8x + 11 for x ∈.

(i)  Express f(x) in the form a(x + b)2 + c, where a, b and c are constants.

(ii)  State the range of f.

(iii) Explain why f does not have an inverse.

The function g is defined by g : x  2x2 – 8x + 11 for x  A, where A is a 

constant.

(iv)  State the largest value of A for which g has an inverse.

(v)  When A has this value, obtain an expression, in terms of x, for g–1(x) and 

state the range of g–1

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q11 November 2007]

12  The function f is defined by f : x  3x – 2 for x ∈.

(i)  Sketch, in a single diagram, the graphs of y = f(x) and y = f –1(x), making 

clear the relationship between the two graphs.

The function g is defined by g : x  6x – x2 for x ∈.

(ii)  Express gf(x) in terms of x, and hence show that the maximum value of 

gf(x) is 9.

The function h is defined by h : x  6x – x2 for x  3.

(iii) Express 6x – x2 in the form a – (x – b)2, where a and b are positive 

constants.

(iv)  Express h–1(x) in terms of x.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 November 2008]

KEy POINTS

1  A mapping is any rule connecting input values (objects) and output 

values (images). It can be many-to-one, one-to-many, one-to-one or 

many-to-many.

2  A many-to-one or one-to-one mapping is called a function. It is a mapping 

for which each input value gives exactly one output value.

3  The domain of a mapping or function is the set of possible input values 

(values of x).

4  The range of a mapping or function is the set of output values.

5  A composite function is obtained when one function (say g) is applied after 

another (say f). The notation used is g[f(x)] or gf(x).

6  For any one-to-one function f(x), there is an inverse function f−1(x).

7  The curves of a function and its inverse are reflections of each other in the 

line y = x.
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Differentiation

Hold infinity in the palm of your hand.

William Blake

This picture illustrates one of the more frightening rides at an amusement park. 

To ensure that the ride is absolutely safe, its designers need to know the gradient 

of the curve at any point. What do we mean by the gradient of a curve?

The gradient of a curve

To understand what this means, think of a log on a log-flume, as in figure 5.1. If 

you draw the straight line y = mx + c passing along the bottom of the log, then 

this line is a tangent to the curve at the point of contact. The gradient m of the 

tangent is the gradient of the curve at the point of contact.

y = mx
 + c

Figure 5.1 

5
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One method of finding the gradient of a curve is shown for point A in figure 5.2.

ACTIVITY 5.1  Find the gradient at the points B, C and D using the method shown in figure 5.2. 

(Use a piece of tracing paper to avoid drawing directly on the book!) Repeat the 

process for each point, using different triangles, and see whether you get the 

same answers.

You probably found that your answers were slightly different each time, because 

they depended on the accuracy of your drawing and measuring. Clearly you need 

a more accurate method of finding the gradient at a point. As you will see in this 

chapter, a method is available which can be used on many types of curve, and 

which does not involve any drawing at all.

Finding the gradient of a curve

Figure 5.3 shows the part of the graph y = x2 which lies between x = −1 and x = 3. 

What is the value of the gradient at the point P(3, 9)?

C

D

B

A

1.5

5.5

A

Figure 5.2 

                     y step
Gradient = –––––
     x step

  5.5 = –––
  1.5

 = 3.7

y

3

6

–1 1

gradient 3

gradient 5

2 3O

9

x

gradient 4
y = x2

P

(1, 1)

(2, 4)

(3, 9)

Figure 5.3 

The line OP is called   
a chord. It joins two 
points on the curve,    

in this case (0, 0)      
and (3, 9).
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You have already seen that drawing the tangent at the point by hand provides 

only an approximate answer. A different approach is to calculate the gradients 

of chords to the curve. These will also give only approximate answers for the 

gradient of the curve, but they will be based entirely on calculation and not 

depend on your drawing skill. Three chords are marked on figure 5.3.

Chord (0, 0) to (3, 9): gradient = =9 0
3 0

3–
–

Chord (1, 1) to (3, 9): gradient = =9 1
3 1

4–
–

Chord (2, 4) to (3, 9): gradient = =9 4
3 2

5–
–

Clearly none of these three answers is exact, but which of them is the most 

accurate?

Of the three chords, the one closest to being a tangent is that joining (2, 4) to  

(3, 9), the two points that are closest together.

You can take this process further by ‘zooming in’ on the point (3, 9) and using 

points which are much closer to it, as in figure 5.4.

The x co-ordinate of point A is 2.7, the y co-ordinate 2.72, or 7.29 (since the 

point lies on the curve y = x2). Similarly B and C are (2.8, 7.84) and (2.9, 8.41). 

The gradients of the chords joining each point to (3, 9) are as follows.

Chord (2.7, 7.29) to (3, 9): gradient = =9 729
3 27

57– .
– .

.

Chord (2.8, 7.84) to (3, 9): gradient = =9 784
3 28

58– .
– .

.  

Chord (2.9, 8.41) to (3, 9): gradient = =9 841
3 29

59– .
– .

.

These results are getting closer to the gradient of the tangent. What happens if you 

take points much closer to (3, 9), for example (2.99, 8.9401) and (2.999, 8.994 001)?

The gradients of the chords joining these to (3, 9) work out to be 5.99 and 5.999 

respectively.

P(3, 9)

C(2.9, 8.41)

B(2.8, 7.84)

A(2.7, 7.29)

chord AP

Figure 5.4 
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ACTIVITY 5.2  Take points X, Y, Z on the curve y = x2 with x co-ordinates 3.1, 3.01 and 3.001 

respectively, and find the gradients of the chords joining each of these points  

to (3, 9).

It looks as if the gradients are approaching the value 6, and if so this is the 

gradient of the tangent at (3, 9).

Taking this method to its logical conclusion, you might try to calculate the 

gradient of the ‘chord’ from (3, 9) to (3, 9), but this is undefined because there is a 

zero in the denominator. So although you can find the gradient of a chord which 

is as close as you like to the tangent, it can never be exactly that of the tangent. 

What you need is a way of making that final step from a chord to a tangent.

The concept of a limit enables us to do this, as you will see in the next section. It 

allows us to confirm that in the limit as point Q tends to point P(3, 9), the chord 

QP tends to the tangent of the curve at P, and the gradient of QP tends to 6 (see 

figure 5.5).

The idea of a limit is central to calculus, which is sometimes described as the study  

of limits.

Historical note  This method of using chords approaching the tangent at P to calculate the gradient 

of the tangent was first described clearly by Pierre de Fermat (c.1608−65). He spent 

his working life as a civil servant in Toulouse and produced an astonishing amount 

of original mathematics in his spare time.

Finding the gradient from first principles

Although the work in the previous section was more formal than the method of 

drawing a tangent and measuring its gradient, it was still somewhat experimental.  

The result that the gradient of y = x2 at (3, 9) is 6 was a sensible conclusion, 

rather than a proved fact.

In this section the method is formalised and extended.

Take the point P(3, 9) and another point Q close to (3, 9) on the curve y = x2. 

Let the x co-ordinate of Q be 3 + h where h is small. Since y = x2 at Q, the 

y co-ordinate of Q will be (3 + h)2.

P (3, 9)

Q

Figure 5.5 
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!  Figure 5.6 shows Q in a position where h is positive, but negative values of 

h would put Q to the left of P.

From figure 5.6, the gradient of PQ is ( ) –3 92+ h
h

 

= + +

= +

= +

= +

9 6 9

6

6

6

2

2

h h
h

h h
h

h h
h

h

–

( )

.

 

For example, when h = 0.001, the gradient of PQ is 6.001, and when h = −0.001, 

the gradient of PQ is 5.999. The gradient of the tangent at P is between these two 

values. Similarly the gradient of the tangent would be between 6 − h and 6 + h for 

all small non-zero values of h.

For this to be true the gradient of the tangent at (3, 9) must be exactly 6.

ACTIVITY 5.3  Using a similar method, find the gradient of the tangent to the curve at 

(i)  (1, 1) 

(ii)  (−2, 4) 

(iii) (4, 16).

What do you notice?

The gradient function

The work so far has involved finding the gradient of the curve y = x2 at a 

particular point (3, 9), but this is not the way in which you would normally find 

the gradient at a point. Rather you would consider the general point, (x, y), and 

then substitute the value(s) of x (and/or y) corresponding to the point of interest.

h

Q

P(3, 9)

(3 + h)2 –  9

(3 + h, (3 + h)2)

Figure 5.6 
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EXAMPLE 5.1  Find the gradient of the curve y = x3 at the general point (x, y).

SOLUTION

Let P have the general value x as its x co-ordinate, so P is the point (x, x3) (since 

it is on the curve y = x3). Let the x co-ordinate of Q be (x + h) so Q is 

((x +h), (x + h)3). The gradient of the chord PQ is given by

 

QR
PR

= +
+

= + + +

= +

( ) –
( ) –

–

x h x
x h x

x x h xh h x
h

x h

3 3

3 2 2 3 3

2

3 3

3 33

3 3

3 3

2 3

2 2

2 2

xh h
h

h x xh h
h

x xh h

+

= + +

= + +

( )

As Q takes values closer to P, h takes smaller and smaller values and the gradient 

approaches the value of 3x2 which is the gradient of the tangent at P. The 

gradient of the curve y = x3 at the point (x, y) is equal to 3x2.

Note

If the equation of the curve is written as y = f(x), then the gradient function (i.e. the 

gradient at the general point (x, y)) is written as f’(x). Using this notation the result 

above can be written as f(x) = x3 ⇒ f’(x) = 3x2.

x

y

P

Q

R

O

Figure 5.7 
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EXERCISE 5A   1   Use the method in Example 5.1 to prove that the gradient of the curve y = x2 at 

the point (x, y) is equal to 2x.

2  Use the binomial theorem to expand (x + h)4 and hence find the gradient of 

the curve y = x4 at the point (x, y).

3  Copy the table below, enter your answer to question 2, and suggest how the 

gradient pattern should continue when f(x) = x5, f(x) = x6 and f(x) = xn (where 

n is a positive whole number).

f(x) f '(x) (gradient at (x, y))

 x2 2x

 x3 3x2

 x4

x5  

 x6



xn

4  Prove the result when f(x) = x5. 

Note

The result you should have obtained from question 3 is known as Wallis’s rule and 

can be used as a formula.

●? How can you use the binomial theorem to prove this general result for integer values 

of n?

An alternative notation

So far h has been used to denote the difference between the x co-ordinates of our 

points P and Q, where Q is close to P. 

h is sometimes replaced by δx. The Greek letter δ (delta) is shorthand for ‘a 

small change in’ and so δx represents a small change in x and δy a corresponding 

small change in y.

In figure 5.8 the gradient of the chord PQ is 
δ
δ

y
x

 .

In the limit as δx → 0, δx and δy both become infinitesimally small and the value 

obtained for 
δ
δ

y
x  

approaches the gradient of the tangent at P.



D
if

fe
re

n
ti

a
ti

o
n

130

P1 

5

  
Lim

    

           
δ
δ

y
x  

is written as 
d
d

y
x

.
 δx

 
→

 
0    

2 

Using this notation, Wallis’s rule becomes

y = xn ⇒ 
d
d

y
x  

= nx n−1.

The gradient function, 
d
d

y
x  

or f ′(x) is sometimes called the derivative of y with 

respect to x, and when you find it you have differentiated y with respect to x.

Note

There is nothing special about the letters x, y and f.

If, for example, your curve represented time (t) on the horizontal axis and velocity 

(v) on the vertical axis, then the relationship may be referred to as v = g(t), i.e. v is a 

function of t, and the gradient function is given by 
d
d
v
t

 = g′(t).

ACTIVITY 5.4  Plot the curve with equation y = x3 + 2, for values of x from −2 to +2. 

On the same axes and for the same range of values of x, plot the curves 

y = x3 − 1, y = x3 and y = x3 + 1.

What do you notice about the gradients of this family of curves when x = 0?

 What about when x = 1 or x = −1?

ACTIVITY 5.5  Differentiate the equation y = x3 + c, where c is a constant. 

How does this result help you to explain your findings in Activity 5.4?

δx

δy

(x + δx, y + δy)Q

P(x, y)

Figure 5.8 

Read this as ‘the 
limit as δx tends 
towards zero’.
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Historical note The notation 
d
d

y
x  was first used by the German mathematician and philosopher 

Gottfried Leibniz (1646–1716) in 1675. Leibniz was a child prodigy and a self-taught 

mathematician. The terms ‘function’ and ‘co-ordinates’ are due to him and, because 

of his influence, the sign ‘=’ is used for equality and ‘×’ for multiplication. In 1684 

he published his work on calculus (which deals with the way in which quantities 

change) in a six-page article in the periodical Acta Eruditorum.

Sir Isaac Newton (1642–1727) worked independently on calculus but Leibniz 

published his work first. Newton always hesitated to publish his discoveries. Newton 

used different notation (introducing ‘fluxions’ and ‘moments of fluxions’) and his 

expressions were thought to be rather vague. Over the years the best aspects of 

the two approaches have been combined, but at the time the dispute as to who 

‘discovered’ calculus first was the subject of many articles and reports, and indeed 

nearly caused a war between England and Germany.

Differentiating by using standard results

The method of differentiation from first principles will always give the gradient 

function, but it is rather tedious and, in practice, it is hardly ever used. Its value is 

in establishing a formal basis for differentiation rather than as a working tool.

If you look at the results of differentiating y = xn for different values of n a pattern 

is immediately apparent, particularly when you include the result that the line  

y = x has constant gradient 1.

y d
d

y
x  

x1 1

x2 2x1

x3 3x2

This pattern continues and, in general

y = xn

  
⇒  y x

y
x

nxn n= =d
d

– .1

This can be extended to functions of the type y = kxn for any constant k, to give

y = kxn  ⇒  y kx
y
x

knxn n= =d
d

– .1

Another important result is that

y = c  ⇒  y c
y
x

= =d
d

0
   

where c is any constant.

This follows from the fact that the graph of y = c is a horizontal line with gradient 

zero (see figure 5.9).

The power n can be any real 
number and this includes positive 

and negative integers and fractions, 
i.e. all rational numbers.
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O

c

y

y = c

x

Figure 5.9 

The line y = c has 
gradient zero and so 

d

d

y

x
 = 0.

EXAMPLE 5.2  For each of these functions of x, find the gradient function.

(i)  y = x5  (ii) z = 7x6  (iii) p = 11 (iv) f(x) = 3
x

SOLUTION

(i) 
d
d

y
x

x= 5 4

(ii) d
d

z
x

x x= × =6 7 425 5

 

(iii) 
d
d

p
x

= 0
 

(iv)  f(x) = 3x –1

 ⇒  f ′(x) = (–1) × 3x –2

  = − 3
2x  

Sums and differences of functions

Many of the functions you will meet are sums or differences of simpler ones. For 

example, the function (3x2 + 4x3) is the sum of the functions 3x2 and 4x3.

To differentiate a function such as this you differentiate each part separately and 

then add the results together.

EXAMPLE 5.3  Differentiate y = 3x2 + 4x3.

SOLUTION

d
d

y
x

x x= +6 12 2

Note

This may be written in general form as:

y = f(x) + g(x)    ⇒   
d
d

y
x  = f′(x) + g′(x).

You many find it 

easier to write 
1
x  as x–1.
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EXAMPLE 5.4  Differentiate f(x) = ( )( )x x
x

2 1 5+ −
 

SOLUTION

You cannot differentiate f(x) as it stands, so you need to start by rewriting it.

Expanding the brackets: 
 

Now you can differentiate f(x) to give f ′(x) = 2x − 5 + 5x−2

 = 2x + 5
2x
 − 5

EXERCISE 5B   Differentiate the following functions using the rules

 y = kxn    ⇒    d
d

y
x

 = knxn−1   

and y = f(x) + g(x)    ⇒    
d
d

y
x

 = f ′(x) + g ′(x).

  1  y = x5    2 y = 4x2   3 y = 2x3  

   4  y = x11   5 y = 4x10   6  y = 3x5

  7  y = 7   8 y = 7x   9 y = 2x3 + 3x5 

10  y = x7 − x4 11 y = x2 + 1 12 y = x3 + 3x2 + 3x + 1

13  y = x3 − 9 14 y = 12x2 + x + 1 15 y = 3x2 + 6x + 6

16  A = 4πr2 17 A = 43πr3 18 d =  14t 2

19  C = 2πr 20 V = l 3 21 f( )x x=
3
2  

22	 y
x

= 1  23 y x=  24 y x= 1
5

5
2

25	 f( )x
x

= 1
2

 26 f( )x
x

= 5
3

 
27 y

x
= 2  

28	 f( )x x
x

= −4 8

 
29 f( )x x x= + −3

2
3
2  30 f( )x x x= − −5

3
2
3

31 y = x(4x − 1) 32  f(x) = (2x − 1)(x + 3) 33 y x x
x

= +2 6  

34 y x x
x

= −4 56 4

2  35  y x x=  36 f( )x x

x
= 2

  37 g( )x x x

x
= −3 22

 38 y x
x

x x= +( ) −
4

4 2( )
 

39 h( )x x= ( )3

40 y x x x

x
= + −( )( )2 2 4

2

f( )x x x x
x

x
x

x
x

x
x x

x x x

= − + −

= − + −

= − + − −

3 2

3 2

2 1

5 5

5 5

5 1 5



D
if

fe
re

n
ti

a
ti

o
n

134

P1 

5

Using differentiation

EXAMPLE 5.5  Given that y x
x

= − 8
2

, find

(i)  d
d

y
x

(ii)  the gradient of the curve at the point (4, 11
2). 

SOLUTION 

(i) Rewrite y x
x

= − 8
2

 as y x x= − −1
2 8 2.

 Now you can differentiate using the rule               ⇒      y kx
y
x

knxn n= = −d
d

1 .

 
d
d

y
x

x x

x x

= +

= +

− −1
2

1
2 16

1

2

16

3

3

(ii) At (4, 11
2), x = 4 

 Substituting x = 4 into the expression for d
d

y
x  

gives

  
d

d

y

x
= +

= +

=

1

2 4

16

43

1
4

16
64

1
2

EXAMPLE 5.6  Figure 5.10 shows the graph of

 y = x2(x − 6) = x3 − 6x2.

Find the gradient of the curve at the points A and B where it meets the x axis.

A B

y y = x3 – 6x2

x

Figure 5.10 
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SOLUTION

The curve cuts the x axis when y = 0, and so at these points

 x2(x − 6) = 0

⇒ x = 0 (twice) or x = 6.

Differentiating y = x3 − 6x2 gives

d
d

y
x

 = 3x2 − 12x.

At the point (0, 0), 
d
d

y
x

 = 0

and at (6, 0), 
d
d

y
x

 = 3 × 62 − 12 × 6 = 36.

At A(0, 0) the gradient of the curve is 0 and at B(6, 0) the gradient of the curve  

is 36.

Note

This curve goes through the origin. You can see from the graph and from the value 

of 
d
d

y
x  that the x axis is a tangent to the curve at this point. You could also have 

deduced this from the fact that x = 0 is a repeated root of the equation x3 − 6x2 = 0.

EXAMPLE 5.7  Find the points on the curve with equation y = x3 + 6x2 + 5 where the value of the 

gradient is −9.

SOLUTION

The gradient at any point on the curve is given by

d
d

y
x

 = 3x2 + 12x.

Therefore you need to find points at which 
d
d

y
x

 = −9, i.e.

 3x2 + 12x = −9

 3x2 + 12x + 9 = 0

 3(x2 + 4x + 3) = 0

 3(x + 1)(x + 3) = 0

⇒ x = −1 or x = −3.

When x = −1, y = (−1)3 + 6(−1)2 + 5 = 10.

When x = −3, y = (−3)3 + 6(−3)2 + 5 = 32.

Therefore the gradient is −9 at the points (−1, 10) and (−3, 32)(see figure 5.11).
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EXERCISE 5C  1  For each part of this question, 

(a)  find d
d

y
x

(b)  find the gradient of the curve at the given point.

(i)  y = x–2; (0.25, 16) 

(ii)  y = x–1 + x–4; (–1, 0)

(iii) y = 4x–3 + 2x–5; (1, 6) 

(iv)  y = 3x4 – 4 – 8x–3; (2, 43)

(v)  y = x + 3x ; (4, 14) 

(vi)  y = 4x−1
2; (9, 11

3)
2  (i)    Sketch the curve y = x2 − 4.

(ii)  Write down the co-ordinates of the points where the curve crosses the x axis.

(iii) Differentiate y = x2 − 4.

(iv)  Find the gradient of the curve at the points where it crosses the x axis.

3  (i)  Sketch the curve y = x2 − 6x.

(ii)  Differentiate y = x2 − 6x.

(iii)   Show that the point (3, −9) lies on the curve y = x2 − 6x and find the 

gradient of the curve at this point.

(iv)  Relate your answer to the shape of the curve.

4  (i)  Sketch, on the same axes, the graphs with equations

 y = 2x + 5   and   y = 4 − x2   for −3  x  3.

(ii)  Show that the point (−1, 3) lies on both graphs.

(iii) Differentiate y = 4 − x2 and so find its gradient at (−1, 3).

(iv)   Do you have sufficient evidence to decide whether the line y = 2x + 5 is a 

tangent to the curve y = 4 − x2?

(v)  Is the line joining (21
2, 0) to (0, 5) a tangent to the curve y = 4 − x2?

0–1–4 –3 –2–5–6 1

10

20

30
(–3, 32) 

x

y y = x3 + 6x2 + 5

(–1, 10) 

Figure 5.11 
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5   The curve y = x3 − 6x2 + 11x − 6 cuts the x axis at x = 1, x = 2 and x = 3.

(i)  Sketch the curve.

(ii)  Differentiate y = x3 − 6x2 + 11x − 6.

(iii)   Show that the tangents to the curve at two of the points at which it cuts the 

x axis are parallel.

6  (i)  Sketch the curve y = x2 + 3x − 1.

(ii)  Differentiate y = x2 + 3x − 1.

(iii)   Find the co-ordinates of the point on the curve y = x2 + 3x − 1 at which it 

is parallel to the line y = 5x − 1.

(iv)   Is the line y = 5x − 1 a tangent to the curve y = x2 + 3x − 1? 

Give reasons for your answer.

7  (i)  Sketch, on the same axes, the curves with equations 

 y = x2 − 9   and   y = 9 − x2   for −4  x  4.

(ii)  Differentiate y = x2 − 9.

(iii) Find the gradient of y = x2 − 9 at the points (2, −5) and (−2, −5).

(iv)  Find the gradient of the curve y = 9 − x2 at the points (2, 5) and (−2, 5).

(v)   The tangents to y = x2 − 9 at (2, −5) and (−2, −5), and those to y = 9 − x2 at 

(2, 5) and (−2, 5) are drawn to form a quadrilateral. 

Describe this quadrilateral and give reasons for your answer.

8  (i)  Sketch, on the same axes, the curves with equations 

 y = x2 − 1   and   y = x2 + 3   for −3  x  3.

(ii)  Find the gradient of the curve y = x2 − 1 at the point (2, 3).

(iii)   Give two explanations, one involving geometry and the other involving 

calculus, as to why the gradient at the point (2, 7) on the curve y = x2 + 3 

should have the same value as your answer to part (ii).

(iv)  Give the equation of another curve with the same gradient function as 

y = x2 − 1.

9  The function f(x) = ax3 + bx + 4, where a and b are constants, goes through the 

point (2, 14) with gradient 21.

(i)  Using the fact that (2, 14) lies on the curve, find an equation involving 

a and b.

(ii)   Differentiate f(x) and, using the fact that the gradient is 21 when x = 2, 

form another equation involving a and b.

(iii) By solving these two equations simultaneously find the values of a and b.
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10  In his book Mathematician’s Delight, W.W. Sawyer observes that the arch of 

Victoria Falls Bridge appears to agree with the curve 

y x= 116 21
120

2–

taking the origin as the point mid-way between the feet of the arch, and 

taking the distance between its feet as 4.7 units.

(i)  Find 
d
d

y
x

.

(ii)  Evaluate 
d
d

y
x  

when x = −2.35 and when x = 2.35.

(iii) Find the value of x for which 
d
d

y
x  

= −0.5.

11  (i)  Use your knowledge of the shape of the curve y = 
1
x  to sketch the curve 

   y = 
1
x  + 2.

(ii)  Write down the co-ordinates of the point where the curve crosses the x 

axis.

(iii) Differentiate y = 
1
x  + 2.

(iv)  Find the gradient of the curve at the point where it crosses the x axis.

12  The sketch shows the graph of y = 
4
2x
 + x.

x

y

O +2.35–2.35

x

y

O



P1 

5

E
x
e
rc

ise
 5

C

139

(i)  Differentiate  y = 
4
2x
 + x.

(ii)  Show that the point (–2, –1) lies on the curve.

(iii) Find the gradient of the curve at (–2, –1).

(iv)  Show that the point (2, 3) lies on the curve.

(v)  Find the gradient of the curve at (2, 3).

(vi)  Relate your answer to part (v) to the shape of the curve.

13  (i)   Sketch, on the same axes, the graphs with equations 

y = 
1

2x
 + 1   and   y = –16x + 13   for   –3  x  3.

(ii)  Show that the point (0.5, 5) lies on both graphs.

(iii) Differentiate y = 
1

2x
 + 1 and find its gradient at (0.5, 5).

(iv)  What can you deduce about the two graphs?

14  (i)  Sketch the curve y = x  for 0  x  10.

(ii)  Differentiate y = x .

(iii) Find the gradient of the curve at the point (9, 3).

15  (i)  Sketch the curve y = 
4
2x
 for –3  x  3.

(ii)  Differentiate y = 
4
2x

.

(iii) Find the gradient of the curve at the point (–2, 1).

(iv)  Write down the gradient of the curve at the point (2, 1).

  Explain why your answer is –1 × your answer to part (iii).

16  The sketch shows the curve y x
x

= −
2

2.

 

 

(i)  Differentiate y x
x

= −
2

2.

(ii)  Find the gradient of the curve at the point where it crosses the x axis.

17  The gradient of the curve y kx=
3
2 at the point x = 9 is 18. Find the value of k. 

18  Find the gradient of the curve y x

x
= − 2  at the point where x = 4.

x

y

O
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Tangents and normals

Now that you know how to find the gradient of a curve at any point you can use 

this to find the equation of the tangent at any specified point on the curve.

EXAMPLE 5.8  Find the equation of the tangent to the curve y = x2 + 3x + 2 at the point (2, 12).

SOLUTION

Calculating 
d
d

d
d

y
x

y
x

x: .= +2 3

Substituting x = 2 into the expression 
d
d

y
x  

to find the gradient m of the tangent at

that point:

m = 2 × 2 + 3

 = 7.

The equation of the tangent is given by

 y − y1 = m(x − x1).

In this case x1 = 2, y1 = 12 so

y − 12 = 7(x − 2)

⇒ y = 7x − 2.

This is the equation of the tangent.

The normal to a curve at a particular point is the straight line which is at 

right angles to the tangent at that point (see figure 5.13). Remember that for 

perpendicular lines, m1m2 = −1.

O–2

y = x2 + 3x + 2

–1 2 x

y

y = 7x – 2

(2, 12)

Figure 5.12 
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normal

tangent

curve

Figure 5.13 

If the gradient of the tangent is m1, the gradient, m2, of the normal is given by

m m2
1

1= – .

This enables you to find the equation of the normal at any specified point on  

a curve.

EXAMPLE 5.9  A curve has equation y
x

x= −16 4 . The normal to the curve at the point (4, –4) 

meets the y axis at the point P. Find the co-ordinates of P.

SOLUTION

You may find it easier to write y
x

x y x x= − = −−16 4 16 41
1
2as .

Differentiating gives  
d
d

y
x

x x= − − ×− −16 42 1
2

1
2

 
= − −16 2

2x x

At the point (4, –4), x = 4 and 
  d
d

y
x
= − −

= − − = −

16
4

2

4
1 1 2

2

 

So at the point (4, –4) the gradient of the tangent is −2.

Gradient of normal
gradient of tangent

= − =1 1
2

The equation of the normal is given by

 y − y1 = m(x − x1)

 y − (−4) = 1
2
(x − 4)

 y = 1
2
x − 6

P is the point where the normal meets the y axis and so where x = 0.

Substituting x = 0 into y = 1
2
x – 6 gives y = –6.

So P is the point (0, −6).
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EXERCISE 5D   1  The graph of y = 6x − x2 is shown below.

 The marked point, P, is (1, 5).

(i)  Find the gradient function 
d
d

y
x

.

(ii)  Find the gradient of the curve at P.

(iii) Find the equation of the tangent at P.

2  (i)  Sketch the curve y = 4x − x2.

(i)  Differentiate y = 4x − x2.

(iii) Find the gradient of y = 4x − x2 at the point (1, 3).

(iv)  Find the equation of the tangent to the curve y = 4x − x2 at the point (1, 3).

3  (i)  Differentiate y = x3 − 4x2.

(ii)  Find the gradient of y = x3 − 4x2 at the point (2, −8).

(iii) Find the equation of the tangent to the curve y = x3 − 4x2 at the point 

(2, −8).

(iv)  Find the co-ordinates of the other point at which this tangent meets the 

curve.

4  (i)  Sketch the curve y = 6 − x2.
(ii)  Find the gradient of the curve at the points (−1, 5) and (1, 5).

(iii) Find the equations of the tangents to the curve at these points.

(iv)  Find the co-ordinates of the point of intersection of these two tangents.

5  (i)  Sketch the curve y = x2 + 4 and the straight line y = 4x on the same axes.
(ii)  Show that both y = x2 + 4 and y = 4x pass through the point (2, 8).

(iii) Show that y = x2 + 4 and y = 4x have the same gradient at (2, 8), and state 

what you conclude from this result and that in part (ii).

6  (i)  Find the equation of the tangent to the curve y = 2x3 − 15x2 + 42x at (2, 40).

(ii)  Using your expression for 
d
d

y
x

, find the co-ordinates of another point on 

  the curve at which the tangent is parallel to the one at (2, 40).

(iii) Find the equation of the normal at this point.

y

x

5 P

y = 6x – x2

1 6O
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7  (i)  Given that y = x3 − 4x2 + 5x − 2, find 
d
d

y
x

.

The point P is on the curve and its x co-ordinate is 3.

(ii)  Calculate the y co-ordinate of P.

(iii) Calculate the gradient at P.

(iv)  Find the equation of the tangent at P.

(v)  Find the equation of the normal at P.

(vi)  Find the values of x for which the curve has a gradient of 5.  
  [MEI]

8  (i)   Sketch the curve whose equation is y = x2 − 3x + 2 and state the 

co-ordinates of the points A and B where it crosses the x axis.
(ii)  Find the gradient of the curve at A and at B.

(iii) Find the equations of the tangent and normal to the curve at both A and B.

(iv)  The tangent at A meets the tangent at B at the point P. The normal at A 
meets the normal at B at the point Q. What shape is the figure APBQ?

9  (i)  Find the points of intersection of y = 2x2 − 9x and y = x − 8.

(ii)  Find 
d
d

y
x  

for the curve and hence find the equation of the tangent to the 

  curve at each of the points in part (i).

(iii) Find the point of intersection of the two tangents.

(iv)  The two tangents from a point to a circle are always equal in length. 
Are the two tangents to the curve y = 2x2 − 9x (a parabola) from the 

point you found in part (iii) equal in length?

10   The equation of a curve is y x= .

(i)  Find the equation of the tangent to the curve at the point (1, 1).

(ii)  Find the equation of the normal to the curve at the point (1, 1).

(iii) The tangent cuts the x axis at A and the normal cuts the x axis at B.

Find the length of AB.

11   The equation of a curve is y
x

= 1.

(i)  Find the equation of the tangent to the curve at the point (2, 12).
(ii)  Find the equation of the normal to the curve at the point (2, 12).
(iii) Find the area of the triangle formed by the tangent, the normal and 

the y axis.
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12   The sketch shows the graph of y = x  – 1.

(i)  Differentiate y = x  – 1.

(ii)  Find the co-ordinates of the point on the curve y = x  – 1  at which the 

tangent is parallel to the line y = 2x  – 1.

(iii) Is the line y = 2x –1 a tangent to the curve y = x  – 1? 

Give reasons for your answer.

13  The equation of a curve is y = x
x

− 1
4

.

(i)  Find the equation of the tangent to the curve at the point where x = 1
4
.

(ii)  Find the equation of the normal to the curve at the point where x = 1
4
.

(iii) Find the area of the triangle formed by the tangent, the normal 

and the x axis.

14  The equation of a curve is y
x

= 9 .

 The tangent to the curve at the point (9, 3) meets the x axis at A and the y 

axis at B. 

Find the length of AB.

15  The equation of a curve is y
x

= +2 8
2
.

(i)   Find the equation of the normal to the curve at the point (2, 4).

(ii)  Find the area of the triangle formed by the normal and the axes.

16   The graph of y x
x

= −3 1
2
 is shown below. 

 The point marked P is (1, 2).

x

y

O 1

–1

x

y

O

P
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(i)   Find the gradient function d
d

y
x

.

(ii)  Use your answer from part (i) to find the gradient of the curve at P.

(iii) Use your answer from part (ii), and the fact that the gradient of the curve 

at P is the same as that of the tangent at P, to find the equation of the 

tangent at P in the form y = mx + c.

17  The graph of y = x2 + 1
x

 is shown below. The point marked Q is (1, 2).

(i)  Find the gradient function d
d

y
x

.

(ii)  Find the gradient of the tangent at Q.

(iii) Show that the equation of the normal to the curve at Q can be written as 

x + y = 3.

(iv)  At what other points does the normal cut the curve?

18  The equation of a curve is y x=
3
2.

 The tangent and normal to the curve at the point x = 4 intersect the x axis at 

A and B respectively. 

 Calculate the length of AB.

19  (i)  The diagram shows the line 2y = x + 5 and the curve y = x2 – 4x + 7, 

which intersect at the points A and B.

x

y

O

Q

x

y

O

A
B

2y = x + 5

y = x2 – 4x + 7
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  Find

(a)  the x co-ordinates of A and B,

(b)  the equation of the tangent to the curve at B,

(c)  the acute angle, in degrees correct to 1 decimal place, between this 

tangent and the line 2y = x + 5.

(ii)  Determine the set of values of k for which the line 2y = x + k does not 

intersect the curve y = x2 – 4x + 7.

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q10 November 2009]

20  The equation of a curve is y = 5 – 8
x

.

(i)  Show that the equation of the normal to the curve at the point P(2, 1) is 

2y + x = 4.

This normal meets the curve again at the point Q.

(ii)  Find the co-ordinates of Q.

(iii) Find the length of PQ.

     [Cambridge AS & A Level Mathematics 9709, Paper 1 Q8 November 2008]

Maximum and minimum points

ACTIVITY 5.6  Plot the graph of y = x4 − x3 − 2x2, taking values of x from −2.5 to +2.5 in steps of 

0.5, and answer these questions.

(i)  How many stationary points has the graph?

(ii)  What is the gradient at a stationary point?

(iii) One of the stationary points is a maximum and the others are minima. 

Which are of each type?

(iv)  Is the maximum the highest point of the graph?

(v)  Do the two minima occur exactly at the points you plotted?

(vi)  Estimate the lowest value that y takes.

Gradient at a maximum or minimum point

Figure 5.14 shows the graph of y = −x2 + 16. It has a maximum point at (0, 16).

y

xO

16

4–4

Figure 5.14 
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You will see that

●● at the maximum point the gradient 
d
d

y
x

 is zero

●● the gradient is positive to the left of the maximum and negative to the right of it.

This is true for any maximum point (see figure 5.15).

In the same way, for any minimum point (see figure 5.16):

●● ●the gradient is zero at the minimum

●● the gradient goes from negative to zero to positive.

Maximum and minimum points are also known as stationary points as the 

gradient function is zero and so is neither increasing nor decreasing.

EXAMPLE 5.10  Find the stationary points on the curve of y = x3 − 3x + 1, and sketch the curve.

SOLUTION

The gradient function for this curve is

d
d

y
x

 = 3x2 − 3.
 

The x values for which 
d
d

y
x  

= 0 are given by

 3x2 − 3 = 0

 3(x2 − 1) = 0

 3(x + 1)(x − 1) = 0

⇒            x = −1 or x = 1.

The signs of the gradient function just either side of these values tell you the 

nature of each stationary point.

0

+ –

Figure 5.15 

+–

0

Figure 5.16 
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For x = −1: x = −2 ⇒ 
d
d

y
x  

= 3(−2)2 − 3 = +9

 x = 0  ⇒ 
d
d

y
x  

= 3(0)2 − 3 = −3.

For x = 1: x = 0  ⇒ 
d
d

y
x  

= −3

 x = 2 ⇒ 
d
d

y
x  

= 3(2)2 − 3 = +9.

Thus the stationary point at x = −1 is a maximum and the one at x = 1 is a 

minimum.

Substituting the x values of the stationary points into the original equation, 

y = x3 − 3x + 1, gives

when x = −1, y = (−1)3 − 3(−1) + 1 = 3

when x = 1, y = (1)3 − 3(1) + 1 = −1.

There is a maximum at (−1, 3) and a minimum at (1, −1). The sketch can now be 

drawn (see figure 5.19).

0

+ –

Figure 5.17 

+–

0Figure 5.18

y

1–1

minimum
(1, –1)

maximum
(–1, 3)

x

–1

3

0

1

Figure 5.19 
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In this case you knew the general shape of the cubic curve and the positions of all 

of the maximum and minimum points, so it was easy to select values of x for 

which to test the sign of 
d
d

y
x

. The curve of a more complicated function may have 

several maxima and minima close together, and even some points at which the 

gradient is undefined. To decide in such cases whether a particular stationary 

point is a maximum or a minimum, you must look at points which are just either 

side of it.

EXAMPLE 5.11  Find all the stationary points on the curve of y = 2t4 − t2 + 1 and sketch the curve.

SOLUTION

d
d
y
t

 = 8t3 − 2t

At a stationary point, 
d
d
y
t  

= 0, so

 8t3 − 2t = 0

 2t(4t2 − 1) = 0

 2t(2t − 1)(2t + 1) = 0

⇒  
d
d
y
t

 = 0 when t = −0.5, 0 or 0.5.

You may find it helpful to summarise your working in a table like the one below. 

You can find the various signs, + or −, by taking a test point in each interval, for 

example t = 0.25 in the interval 0  t  0.5.

t  −0.5 −0.5 −0.5  t  0 0 0  t  0.5 0.5 t  0.5

Sign of
 

d
dt
y − 0 + 0 − 0 +

Stationary point min max min

There is a maximum point when t = 0 and there are minimum points when           
t = −0.5 and +0.5.

When t = 0: y = 2(0)4 − (0)2 + 1 = 1.

When t = −0.5: y = 2(−0.5)4 − (−0.5)2 + 1 = 0.875.

When t = 0.5: y = 2(0.5)4 − (0.5)2 + 1 = 0.875.

Therefore (0, 1) is a maximum point and (−0.5, 0.875) and (0.5, 0.875) are minima.
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The graph of this function is shown in figure 5.20.

Increasing and decreasing functions

When the gradient is positive, the function is described as an increasing function. 

Similarly, when the gradient is negative, it is a decreasing function. These terms 

are often used for functions that are increasing or decreasing for all values of x.

EXAMPLE 5.12  Show that y = x3 + x is an increasing function.

SOLUTION

y = x3 + x ⇒ d
d

y
x  

= 3x2 + 1.

Since x2  0 for all real values of x, 
 
d
d

y
x

   1

⇒ y = x3 + x is an increasing function.

Figure 5.21 shows its graph.

y

t0 0.5 1–0.5

0.875

1

–1

Figure 5.20 

Figure 5.21 

y

0 1 2–1–2

1

2

3

–1

–2

–3
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EXAMPLE 5.13  Find the range of values of x for which 

the function y = x2 − 6x is a decreasing 

function. 

SOLUTION

y = x2 − 6x ⇒  d
d

y
x  

= 2x − 6. 

y decreasing ⇒ d
d

y
x  

< 0

 ⇒ 2x − 6 < 0

 ⇒ x < 3.

Figure 5.22 shows the graph of 

y = x2 − 6x.

EXERCISE 5E    1 Given that y = x2 + 8x + 13

(i)  find 
d
d

y
x

, and the value of x for which 
d
d

y
x

 = 0

(ii)  showing your working clearly, decide whether the point corresponding to 

this x value is a maximum or a minimum by considering the gradient either 

side of it

(iii) show that the corresponding y value is −3

(iv)  sketch the curve.

2  Given that y = x2 + 5x + 2

(i)  find 
d
d

y
x

, and the value of x for which 
d
d

y
x

 = 0

(ii)  classify the point that corresponds to this x value as a maximum or a 
minimum

(iii)  find the corresponding y value

(iv)  sketch the curve.

3  Given that y = x3 − 12x + 2

(i)  find 
d
d

y
x

, and the values of x for which 
d
d

y
x  

= 0

(ii)  classify the points that correspond to these x values

(iii)  find the corresponding y values

(iv)  sketch the curve.

4  (i)   Find the co-ordinates of the stationary points of the curve y = x3 − 6x2, 

and determine whether each one is a maximum or a minimum.

(ii)  Use this information to sketch the graph of y = x3 − 6x2.

5  Find 
d
d

y
x  

when y = x3 − x and show that y = x3 − x is an increasing function

 for x x< >– 1

3

1

3
and .

x

y

0 3 6

–9

Figure 5.22 
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6  Given that y = x3 + 4x 

(i)  find 
d
d

y
x  

(ii)  show that y = x3 + 4x is an increasing function for all values of x.

7  Given that y = x3 + 3x2 − 9x + 6

(i)  find 
d
d

y
x  

and factorise the quadratic expression you obtain

(ii)  write down the values of x for which 
d
d

y
x  

= 0

(iii) show that one of the points corresponding to these x values is a 
minimum and the other a maximum

(iv)  show that the corresponding y values are 1 and 33 respectively

(v)  sketch the curve.

8  Given that y = 9x + 3x2 − x3

(i)  find 
d
d

y
x  

and factorise the quadratic expression you obtain

(ii)  find the values of x for which the curve has stationary points, and classify 
these stationary points

(iii)  find the corresponding y values

(iv)  sketch the curve.

9  (i)   Find the co-ordinates and nature of each of the stationary points of 
y = x3 − 2x2 − 4x + 3.

(ii)  Sketch the curve.

10  (i)   Find the co-ordinates and nature of each of the stationary points of the 
curve with equation y = x4 + 4x3 − 36x2 + 300.

(ii)  Sketch the curve.

11  (i)  Differentiate y = x3 + 3x.
(ii)  What does this tell you about the number of stationary points of the 

curve with equation y = x3 + 3x ?

(iii) Find the values of y corresponding to x = −3, −2, −1, 0, 1, 2 and 3.

(iv)  Hence sketch the curve and explain your answer to part (ii).

12  You are given that y = 2x3 + 3x2 − 72x + 130.

(i)  Find 
d
d

y
x

. 

P is the point on the curve where x = 4.

(ii)  Calculate the y co-ordinate of P.

(iii) Calculate the gradient at P and hence find the equation of the tangent to 
the curve at P.

(iv)  There are two stationary points on the curve. Find their co-ordinates.
  [MEI]
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13  (i)  Find the co-ordinates of the stationary points of the curve f(x) = 4x + 1
x

.

(ii)  Find the set of values of x for which f(x) is an increasing function.

14  The equation of a curve is y = 1
6
(2x − 3)3 − 4x.

(i)  Find d
d

y
x

.

(ii)  Find the equation of the tangent to the curve at the point where the curve 

intersects the y axis.

(iii) Find the set of values of x for which 1
6
(2x − 3)3 − 4x is an increasing 

function of x.

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q10 June 2010]

15  The equation of a curve is y = x2 – 3x + 4.

(i)  Show that the whole of the curve lies above the x axis.

(ii)  Find the set of values of x for which x2 – 3x + 4 is a decreasing function of x.

The equation of a line is y + 2x = k, where k is a constant.

(iii) In the case where k = 6, find the co-ordinates of the points of intersection 

of the line and the curve.

(iv)  Find the value of k for which the line is a tangent to the curve.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 June 2005]

16  The equation of a curve C is y = 2x2 – 8x + 9 and the equation of a line L is 

x + y = 3.

(i)  Find the x co-ordinates of the points of intersection of L and C.

(ii)  Show that one of these points is also the stationary point of C.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 June 2008]

Points of inflection

It is possible for the value of d
d

y
x

 to be zero at a point on a curve without it being a 

maximum or minimum. This is the case 
with the curve y = x3, at the point (0, 0) 
(see figure 5.23).

    y = x3    ⇒       d
d

y
x

 = 3x2

and when x = 0,  d
d

y
x

 = 0. x

y

O

Figure 5.23
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This is an example of a point of inflection. In general, a point of inflection occurs 

where the tangent to a curve crosses the curve. This can happen also when  
d
d

y
x  

≠ 0, 
as shown in figure 5.24.

+–

+
–

+–

Figure 5.24 

Notice that the 
gradient of the 

curve on either side 
of the point has the 

same sign.

Points of inflection

If you are a driver you may find it helpful to think of a point of inflection as the 
point at which you change from left lock to right lock, or vice versa. Another way 
of thinking about a point of inflection is to view the curve from one side and see 
it as the point where the curve changes from being concave to convex.

The second derivative

Figure 5.25 shows a sketch of a function y = f(x), and beneath it a sketch of the 

corresponding gradient function 
d
d

y
x  

= f´(x).

y

O

dy––dx

O

x

x

P

Q

Figure 5.25 
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ACTIVITY 5.7  Sketch the graph of the gradient of  
d
d

y
x  

against x for the function illustrated in 

 figure 5.25. Do this by tracing the two graphs shown in figure 5.25, and extending 

the dashed lines downwards on to a third set of axes.

You can see that P is a maximum point and Q is a minimum point. What can 

you say about the gradient of  
d
d

y
x  

at these points: is it positive, negative or zero?

The gradient of any point on the curve of 
d
d

y
x  

is given by 
d

d
d
dx

y
x





 . This is written 

as 
d
d

2

2

y
x  

or f ′′(x), and is called the second derivative. It is found by differentiating 

the function a second time.

!  The second derivative, 
d
d

2

2

y
x

, is not the same as  
d
d

y
x







2

.

EXAMPLE 5.14  Given that y = x5 + 2x, find 
d
d

2

2

y
x

.

SOLUTION

d
d

d
d

y
x

x

y
x

x

= +

=

5 2

20

4

2

2
3.

Using the second derivative

You can use the second derivative to identify the nature of a stationary point, 

instead of looking at the sign of  
d
d

y
x

 just either side of it.

Stationary points

Notice that at P, 
d
d

y
x  

= 0 and 
d
d

2

2

y
x  

< 0. This tells you that the gradient, 
d
d

y
x

, is zero 

and decreasing. It must be going from positive to negative, so P is a maximum 

point (see figure 5.26).

At Q, 
d
d

y
x  

= 0 and 
d
d

2

2

y
x  

> 0. This tells you that the gradient, 
d
d

y
x

, is zero and 

increasing. It must be going from negative to positive, so Q is a minimum point 

(see figure 5.27).
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The next example illustrates the use of the second derivative to identify the 

nature of stationary points.

EXAMPLE 5.15  Given that y = 2x 3 + 3x 2 − 12x 

(i) find 
d
d

y
x

, and find the values of x for which 
d
d

y
x  

= 0

(ii) find the value of 
d
d

2

2

y
x  

at each stationary point and hence determine its nature

(iii) find the y values of each of the stationary points

(iv) sketch the curve given by y = 2x 3 + 3x 2 − 12x.

SOLUTION

(i) 
d
d

y
x

 = 6x2 + 6x − 12

  = 6(x2 + x − 2)

  = 6(x + 2)(x − 1)

 
d
d

y
x

 = 0 when x = −2 or x =  1.

(ii) 
d
d

2

2

y
x

 = 12x + 6.

 When x = −2, 
d
d

2

2

y
x

 = 12 × (−2) + 6 = −18.

  
d
d

2

2

y
x

  0 ⇒ a maximum.

 When x = 1, 
d
d

2

2

y
x

 = 6(2 × 1 + 1) = 18.

  
d
d

2

2

y
x

  0 ⇒ a minimum.

(iii) When x = −2, y = 2(−2)3 + 3(−2)2 − 12(−2)
   = 20

so (−2, 20) is a maximum point.

When x = 1,   y = 2 + 3 − 12
  = −7

so (1, −7) is a minimum point. 

0

P

+ –

d2y

dx2
< 0

at P

Figure 5.26                   Figure 5.27

0

Q

+–

d2y

dx2
> 0

at Q
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(iv) 

!  Remember that you are looking for the value of  
d
d

2

2

y
x  

at the stationary point.

Note

On occasions when it is difficult or laborious to find 
d
d

2

2
y

x
, remember that you can 

always determine the nature of a stationary point by looking at the sign of 
d
d

y
x  

for 

points just either side of it.

!  Take care when  
d
d

2

2

y
x  

= 0. Look at these three graphs to see why.

x

y y = x3

O

Figure 5.29

 y = x3

 

d

d

y

x  
= 3x2: at (0, 0) 

d

d

y

x
 = 0

 
d

d

2

2

y

x  
= 6x: at (0, 0) 

d

d

2

2

y

x
 = 0

x

y y = x4

O

Figure 5.30

     y = x4

 

d

d

y

x  
= 4x3: at (0, 0) 

d

d

y

x
 = 0

 
d

d

2

2

y

x  
= 12x2: at (0, 0) 

d

d

2

2

y

x
 = 0

20

y y = 2x3 + 3x2 –12x

x0
–7

–2 –1

Figure 5.28 
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y

y = –x4

O

Figure 5.31

     y = –x4

 

d

d

y

x  
= –4x3: at (0, 0) 

d

d

y

x
 = 0

 
d

d

2

2

y

x  
= –12x2: at (0, 0) 

d

d

2

2

y

x
 = 0

You can see that for all three of these functions both 
d
d

y
x  

and 
d
d

2

2

y
x  

are zero at the 

origin.

Consequently, if both 
d
d

y
x

 and 
d
d

2

2

y
x

 are zero at a point, you still need to check the 

 values of  
d
d

y
x

 either side of the point in order to determine its nature.

EXERCISE 5F    1  For each of the following functions, find 
d
d

y
x  

and 
d
d

2

2

y
x

.

(i)  y = x 3  (ii) y = x 5 (iii) y = 4x 2 

(iv)  y = x –2  (v) y = x
3
2  (vi) y = x 4 − 2

3x

2  Find any stationary points on the curves of the following functions and 

identify their nature. 

(i)  y = x 2 + 2x + 4  (ii) y = 6x − x 2

(iii)  y = x 3 − 3x  (iv) y = 4x 5 − 5x 4

(v)  y = x 4 + x 3 − 2x 2 − 3x + 1 (vi) y = x  + 1
x

(vii)  y = 16x  + 1
2x

 (viii) y = x 3 + 12
x

(ix)  y = 6x  − x
3
2

3  You are given that y = x 4 − 8x 2.

(i)  Find 
d
d

y
x

.

(ii)  Find 
d
d

2

2

y
x

.

(iii) Find any stationary points and identify their nature.

(iv)  Hence sketch the curve.
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4   Given that y = (x − 1)2(x − 3)

(i)  multiply out the right-hand side and find 
d
d

y
x  

(ii)  find the position and nature of any stationary points

(iii) sketch the curve.

5  Given that y = x2(x − 2)2

(i)  multiply out the right-hand side and find 
d
d

y
x  

(ii)  find the position and nature of any stationary points

(iii) sketch the curve.

6  The function y = px3 + qx2, where p and q are constants, has a stationary 

point at (1, −1).

(i)  Using the fact that (1, −1) lies on the curve, form an equation involving 

p and q.

(ii)  Differentiate y and, using the fact that (1, −1) is a stationary point, form 

another equation involving p and q.

(iii) Solve these two equations simultaneously to find the values of p and q.

7  You are given f(x) = 4x2 + 1
x

.

(i)  Find f (x) and f (x).

(ii)  Find the position and nature of any stationary points.

8  For the function y = x – 4 x ,

(i)  find 
d
d

y
x

 and 
d
d

2

2

y
x  

(ii)  find the co-ordinates of the stationary point and determine its nature. 

9  The equation of a curve is y = 6 x  – x x .

 Find the x co-ordinate of the stationary point and show that the turning 

point is a maximum.

10  For the curve x
5
2  – 10x

3
2 ,

(i)  find the values of x for which y = 0

(ii)  show that there is a minimum turning point of the curve when x = 6 and 

calculate the y value of this minimum, giving the answer correct to 

1 decimal place.
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Applications

There are many situations in which you need to find the maximum or minimum 

value of an expression. The examples which follow, and those in Exercise 5G, 

illustrate a few of these.

EXAMPLE 5.16  Kelly’s father has agreed to let her have part of his garden as a vegetable plot. 

He says that she can have a rectangular plot with one side against an old wall.  

He hands her a piece of rope 5 m long, and invites her to mark out the part she 

wants. Kelly wants to enclose the largest area possible.  

What dimensions would you advise her to use?

SOLUTION

Let the dimensions of the bed be x m × y m as shown in figure 5.32.

The area, A m2, to be enclosed is given by A = xy.

Since the rope is 5 m long, 2x + y = 5 or y = 5 − 2x.

Writing A in terms of x only A = x(5 − 2x) = 5x − 2x2.

To maximise A, which is now written as a function of x, you differentiate A with 

respect to x

d
d
A
x  

= 5 − 4x.

At a stationary point, d
d
A
x  

= 0, so

 5 − 4x = 0

 x = 54  
= 1.25.

d
d

2

2
A

x
 = −4 ⇒ the turning point is a maximum.

The corresponding value of y is 5 − 2(1.25) = 2.5. Kelly should mark out a 

rectangle 1.25 m wide and 2.5 m long.

x m x m

5 m
y m

x m
x m

y m

Figure 5.32
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EXAMPLE 5.17  A stone is projected vertically upwards with a speed of 30 m s−1. 

Its height, h m, above the ground after t seconds (t  6) is given by:

h = 30t − 5t2.

(i) Find d
d

and d
d

h
t

h
t

2

2
.

(ii) Find the maximum height reached.

(iii) Sketch the graph of h against t.

SOLUTION

(i) d
d
h
t  

= 30 − 10t.

 
d
d

2

2
h

t  
= −10.

(ii) For a stationary point, d
d
h
t  

= 0

  30 − 10t = 0

⇒     10(3 − t) = 0

⇒     t = 3.

    

d
d

2

2
h

t
 < 0 ⇒ the stationary point is a maximum.

    The maximum height is

     h = 30(3) − 5(3)2 = 45 m.

(iii)   

Note

For a position–time graph, such as this one, the gradient, dd
h
t , is the velocity and d

d

2

2
h
t  

 

is the acceleration.

h (metres)

3 60

45

t (seconds)

Figure 5.33
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EXERCISE 5G   1   A farmer wants to construct a temporary rectangular enclosure of length x m 

and width y m for his prize bull while he works in the field. He has 120 m of 

fencing and wants to give the bull as much room to graze as possible.

(i)  Write down an expression for y in terms of x.

(ii)  Write down an expression in terms of x for the area, A, to be enclosed.

(iii) Find d
d

and d
d

A
x

A
x

2

2 , and so find the dimensions of the enclosure that give the 

  bull the maximum area in which to graze. State this maximum area.

2  A square sheet of card of side 12 cm has four equal squares of side x cm cut 

from the corners. The sides are then turned up to make an open rectangular 

box to hold drawing pins as shown in the diagram.

(i)  Form an expression for the volume, V, of the box in terms of x.

(ii)  Find d
d

and d
d

V
x

V
x

2

2
, and show that the volume is a maximum when the depth 

  is 2 cm.

3  The sum of two numbers, x and y, is 8.

(i)  Write down an expression for y in terms of x.

(ii)  Write down an expression for S, the sum of the squares of these two 

numbers, in terms of x.

(iii) By considering d
d

and d
d

S
x

S
x

2

2, find the least value of the sum of their squares.

4  A new children’s slide is to be built with a cross-section as shown in the 

diagram. A long strip of metal 80 cm wide is available for the shute and will be 

bent to form the base and two sides. 

The designer thinks that for maximum safety the area of the cross-section 

should be as large as possible.

x cm

x cm

12 cm

12 cm
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(i)  Write down an equation linking x and y.

(ii)  Using your answer to part (i), form an expression for the cross-sectional 
area, A, in terms of x.

(iii) By considering d
d

and d
d

A
x

A
x

2

2 , find the dimensions which make the slide as

  safe as possible.

5  A carpenter wants to make a box to hold toys. The box is to be made so that its 
volume is as large as possible. A rectangular sheet of thin plywood measuring 
1.5 m by 1 m is available to cut into pieces as shown.

(i)  Write down the dimensions of one of the four rectangular faces in terms of x.

(ii)  Form an expression for the volume, V, of the made-up box, in terms of x.

(iii) Find d
d

and d
d

V
x

V
x

2

2
..

(iv)  Hence find the dimensions of a box with maximum volume, and the 
corresponding volume.

6  A piece of wire 16 cm long is cut into two pieces. One piece is 8x cm long and 
is bent to form a rectangle measuring 3x cm by x cm. The other piece is bent to 
form a square.

(i)  Find in terms of x:
(a)  the length of a side of the square
(b)  the area of the square.

(ii)  Show that the combined area of the rectangle and the square is A cm2 
where A = 7x2 − 16x + 16.

(iii) Find the value of x for which A has its minimum value.

(iv)  Find the minimum value of A.  
  [MEI]

cross-section

x cmx cm
y  cm

x m

x m

x m

1.5 m

1m

x m

The shaded area is cut 
off and not used.
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7   A piece of wire 30 cm long is going to be made into two frames for blowing 

bubbles. The wire is to be cut into two parts. One part is bent into a circle of 

radius r cm and the other part is bent into a square of side x cm.

(i)  Write down an expression for the perimeter of the circle in terms of r, and 

hence write down an expression for r in terms of x.

(ii)  Show that the combined area, A, of the two shapes can be written as

A
x x= + +( ) –

.
4 60 2252π

π
(iii) Find the lengths that must be cut if the area is to be a minimum.

8  A cylindrical can with a lid is to be made from a thin sheet of metal. Its height 

is to be h cm and its radius r cm. The surface area is to be 250π cm2.

(i)  Find h in terms of r.

(ii)  Write down an expression for the volume, V, of the can in terms of r.

(iii) Find 
d
d

and
d

d

V
r

V

r

2

2
.

(iv)  Use your answers to part (iii) to show that the can’s maximum possible 
volume is 1690 cm3 (to 3 significant figures), and find the corresponding 
dimensions of the can.

9  Charlie wants to add an extension with a floor area of 18 m2 to the back of his 

house. He wants to use the minimum possible number of bricks, so he wants 

to know the smallest perimeter he can use. The dimensions, in metres, are x 

and y as shown.

(i)  Write down an expression for the area in terms of x and y.

(ii)  Write down an expression, in terms of x and y, for the total length, T, of 

the outside walls.

(iii) Show that 

  T x
x

= +2 18 .

(iv)  Find d
d
T
x

 and d
d

2

2
T
x

.

(v)  Find the dimensions of the extension that give a minimum value of T, and 

confirm that it is a minimum.

x

y

HOUSE
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10     A fish tank with a square base and no top is to be made from a thin sheet of 

toughened glass. The dimensions are as shown.

(i)  Write down an expression for the volume V in terms of x and y.

(ii)  Write down an expression for the total surface area A in terms of x and y.

The tank needs a capacity of 0.5 m3 and the manufacturer wishes to use the 

minimum possible amount of glass.

(iii) Deduce an expression for A in terms of x only.

(iv)  Find d
d
A
x

 and d
d

2

2
A

x
.

(v)  Find the values of x and y that use the smallest amount of glass and 

confirm that these give the minimum value.

11  A closed rectangular box is made of thin card, and its length is three times its 

width. The height is h cm and the width is x cm.

(i)  The volume of the box is 972 cm3. 

Use this to write down an expression for h in terms of x.

(ii)  Show that the surface area, A, can be written as A = 6x 2 + 2592
x

 .

(iii) Find d
d
A
x

 and use it to find a stationary point. 

  Find d
d

2

2
A

x
 and use it to verify that the stationary point gives the minimum

  value  of A.

(iv)  Hence find the minimum surface area and the corresponding dimensions 

of the box.

x m

x m

y  m

h

x
3x



D
if

fe
re

n
ti

a
ti

o
n

166

P1 

5

12   A garden is planned with a lawn area of 24 m2 and a path around the edge. 

The dimensions of the lawn and path are as shown in the diagram.

(i)  Write down an expression for y in terms of x.

(ii)  Find an expression for the overall area of the garden, A, in terms of x.

(iii) Find the smallest possible overall area for the garden.

13  The diagram shows the cross-section of a hollow cone and a circular cylinder. 

The cone has radius 6 cm and height 12 cm, and the cylinder has radius r cm 

and height h cm. The cylinder just fits inside the cone with all of its upper 

edge touching the surface of the cone.

(i)  Express h in terms of r and hence show that the volume, V cm3, of the 

cylinder is given by

  V = 12πr 2 – 2πr3

(ii)  Given that r varies, find the stationary value of V.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 November 2005]

1 m

y m

x m

1 m

1.5 m

1.5 m

lawn

h cm

r cm

6 cm

12 cm
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The chain rule

●? What information is given by d
d

and d
d

What informa

V
h

h
t

?

ttion is given by d
d

d
d

V
h

h
t

× ?

How would you differentiate an expression like

y x= +2 1?

Your first thought may be to write it as y = (x2 + 1)
1
2

 and then get rid of the 

brackets, but that is not possible in this case because the power 12 is not a positive 

integer. Instead you need to think of the expression as a composite function, a 

‘function of a function’.

You have already met composite functions in Chapter 4, using the notation 

g[f(x)] or gf(x).

In this chapter we call the first function to be applied u(x), or just u, rather than 

f(x).

In this case, u = x2 + 1

and y = u           = u
1
2.

This is now in a form which you can differentiate using the chain rule.

Differentiating a composite function

To find 
d
d

y
x  for a function of a function, you consider the effect of a small change 

in x on the two variables, y and u, as follows. A small change δx in x leads to a 

small change δu in u and a corresponding small change δy in y, and by simple 

algebra,

δ
δ

δ
δ

δ
δ

y
x

y
u

u
x

= × .  

h

Volume V
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In the limit, as δx → 0,

δ
δ

δ
δ

δ
δ

y
x

y
x

y
u

y u
x

u
x

→ → →d
d

d
du

and
d
d

,
 

and so the relationship above becomes

d
d

d
d

d
d

y
x

y
u

u
x

= × .
  

This is known as the chain rule.

EXAMPLE 5.18  Differentiate y = (x 2 + 1)
1
2.

SOLUTION

As you saw earlier, you can break down this expression as follows.

y = u
1
2,  u = x2 + 1

Differentiating these gives

d
d

y
u

u
x

= =
+

1
2

1

2 1

1
2

2

–
 

and 
d
d

u
x

x= 2 .  

By the chain rule 

d
d

d
d

d
d

y
x

y
u

u
x

x
x

x

x

= ×

=
+

×

=
+

1

2 1
2

1

2

2

!  Notice that the answer must be given in terms of the same variables as the 

question, in this case x and y. The variable u was your invention and so should 

not appear in the answer.

You can see that effectively you have made a substitution, in this case  

u = x2 + 1. This transformed the problem into one that could easily be solved.

Note

Notice that the substitution gave you two functions that you could differentiate. 

Some substitutions would not have worked. For example, the substitution u = x2, 

would give you

y = (u + 1)
1
2 and u = x2.

You would still not be able to differentiate y, so you would have gained nothing.
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EXAMPLE 5.19  Use the chain rule to find 
d
d

y
x

 when y = (x2 − 2)4. 

SOLUTION

Let u = x 2 − 2, then y = u4.

d
d

u
x

 = 2x 

and 

d
d

y
u

 = 4u3

      = 4(x 2 − 2)3

d
d

d
d

d
d

y
x

y
u

u
x

= ×  

           = 4(x 2 − 2)3 × 2x

          = 8x (x 2 − 2)3.

 ●  A student does this question by first multiplying out (x2 − 2)4 to get a polynomial 

of order 8. Prove that this heavy-handed method gives the same result.

!  With practice you may find that you can do some stages of questions like this in 

your head, and just write down the answer. If you have any doubt, however, you 

should write down the full method.

Differentiation with respect to different variables

The chain rule makes it possible to differentiate with respect to a variable which 

does not feature in the original expression. For example, the volume V of a 

sphere of radius r is given by V r= 4
3

3π . Differentiating this with respect to r gives 

the rate of change of volume with radius, d
d
V
r

r= 4 2π . However you might be 

more interested in finding d
d
V
t

, the rate of change of volume with time, t.

To find this, you would use the chain rule:

d
d

d
d

d
d

d
d

d
d

V
t

V
r

r
t

V
t

r r
t

= ×

= 4 2π

 

You have now differentiated V with respect to t.

The use of the chain rule in this way widens the scope of differentiation and this 

means that you have to be careful how you describe the process. 

Notice that the expression for 
dV–
dt

 includes 
dr–
dt

, the rate of 

increase of radius with time.
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!  ‘Differentiate y = x 2’ could mean differentiation with respect to x, or t, or any 

other variable. In this book, and others in this series, we have adopted the 

convention that, unless otherwise stated, differentiation is with respect to the 

variable on the right-hand side of the expression. So when we write ‘differentiate 

y = x2’ or simply ‘differentiate x2’, it is to be understood that the differentiation is 

with respect to x.

!  The expression ‘increasing at a rate of’ is generally understood to imply 

differentation with respect to time, t.

EXAMPLE 5.20  The radius r cm of a circular ripple made by dropping a stone into a pond is 

increasing at a rate of 8 cm s−1. At what rate is the area A cm2 enclosed by the 

ripple increasing when the radius is 25 cm?

SOLUTION

A = πr2 
d
d
A
r

 = 2πr

The question is asking for d
d
A
t

, the rate of change of area with respect to time.

Now d
d

d
d

d
d

d
d

When and d
d

d
d

A
t

A
r

r
t

r r
t

r r
t

A
t

= ×

=

= =

2

25 8

π .

== × ×2 25 8π

  

Now d
d

d
d

d
d

d
d

When and d
d

d
d

A
t

A
r

r
t

r r
t

r r
t

A
t

= ×

=

= =

2

25 8

π .

== × ×2 25 8π

 

	  1260 cm2 s−1.
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EXERCISE 5H     1  Use the chain rule to differentiate the following functions.

(i)  y = (x + 2)3 (ii)  y = (2x + 3)4 (iii) y = (x2 − 5)3

(iv)  y = (x3 + 4)5 (v)  y = (3x + 2)−1 (vi) y
x

= 1
32 3( – )

(vii) y = (x2 − 1)
3
2 (viii) y = (1

x  + x)3
 (ix) y = x −( )1

4

2  Given that y = (3x − 5)3

(i)  find 
d
d

y
x

  

(ii)  find the equation of the tangent to the curve at (2, 1)

(iii) show that the equation of the normal to the curve at (1, −8) can be written 

in the form

36y + x + 287 = 0.

3  Given that y = (2x − 1)4

(i)  find 
d
d

y
x

(ii)  find the co-ordinates of any stationary points and determine their nature

(iii) sketch the curve.

4  Given that y = (x2 − x − 2)4

(i)  find 
d
d

y
x

(ii)  find the co-ordinates of any stationary points and determine their nature

(iii) sketch the curve.

5  The length of a side of a square is increasing at a rate of 0.2 cm s−1. 

At what rate is the area increasing when the length of the side is 10 cm?

6  The force F newtons between two magnetic poles is given by the formula       

 F
r

= 1
500 2, where r m is their distance apart. 

Find the rate of change of the force when the poles are 0.2 m apart and the 

distance between them is increasing at a rate of 0.03 m s−1.

7  The radius of a circular fungus is increasing at a uniform rate of 5 cm per day. 

At what rate is the area increasing when the radius is 1 m?
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KEY POINTS

1   y = kxn ⇒ d
d

y
x

knxn= –1    

 y = c ⇒ 
d
d

y
x

= 0 

2  y = f(x) + g(x)    ⇒      d
d

y
x

 = f ′(x) + g ′(x).

3   Tangent and normal at (x1, y1)

 Gradient of tangent, m1 = value of  
d
d

y
x

 

when x  = x1.

 Gradient of normal, m2 = – 1
1m .

 Equation of tangent is

 y − y1 = m1(x − x1).

 Equation of normal is

 y − y1 = m2(x − x1).

4  At a stationary point, 
d
d

y
x

 

= 0.

The nature of a stationary point can be determined by looking at the sign of 

the gradient just either side of it.

5  The nature of a stationary point can also be determined by considering the 

 sign of 
d
d

2

2

y
x

.
 

● If 
d
d

2

2

y
x

 

< 0, the point is a maximum.

● If 
d
d

2

2

y
x

 

> 0, the point is a minimum.

6  If 
d
d

2

2

y
x

 

= 0, check the values of 
d
d

y
x

 

on either side of the point to determine 

 its nature.

7  Chain rule: 
d
d

d
d

d
d

y
x

y
u

u
x

= × .
 

 

Where k, n and c are 
constants.}

0

+ –

0

Maximum Minimum Stationary point of infection

0
+

+

+

–
0

+

+
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Integration

Many small make a great.

	 	 	 	 	 	 Chaucer

●?	 In	what	way	can	you	say	

that	these	four	curves	are		

all	parallel	to	each	other?	

	

	

	

	

	

	

	

	

	

	

	

	

Reversing differentiation

In	some	situations	you	know	the	gradient	function,	
d
d

y
x

,	and	want	to	find	the

function	itself,	y.	For	example,	you	might	know	that	
d
d

y
x 	

=	2x	and	want	to	find	y.

You	know	from	the	previous	chapter	that	if	y =	x2	then	
d
d

y
x 	

=	2x,	but	

y	=	x2	+	1,	y =	x2	−	2	and	many	other	functions	also	give	
d
d

y
x 	

=	2x.

Suppose	that	f(x)	is	a	function	with	f ′(x)	=	2x.	Let	g(x)	=	f(x)	−	x2.	

Then	g ′(x)	=	f ′(x)	−	2x	=	2x	−	2x	=	0	for	all	x.	So	the	graph	of	y	=	g(x)	has	zero	

gradient	everywhere,	i.e.	the	graph	is	a	horizontal	straight	line.		

Thus	g(x)	=	c	(a	constant).	Therefore	f(x)	=	x2	+	c.	

All	that	you	can	say	at	this	point	is	that	if 	
d
d

y
x 	

=	2x	then	y	=	x2	+	c where	c is	

described	as	an	arbitrary constant.	An	arbitrary	constant	may	take	any	value.

O

y = x3 + 4 

y = x3 + 7 

y = x3

y = x3 – 2 

x

y

6
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The	equation	
d
d

y
x 	

=	2x	is	an	example	of	a	differential equation	and	the	process	of	

solving	this	equation	to	find y	is	called	integration.	

So	the	solution	of	the	differential	equation	
d
d

y
x

		=	2x	is	y	=	x2	+	c.

Such	a	solution	is	often	referred	to	as	the	general solution	of	the	differential	

equation.	It	may	be	drawn	as	a	family	of	curves	as	in	figure	6.1.	Each	curve	

corresponds	to	a	particular	value	of	c.

Particular solutions

Sometimes	you	are	given	more	information	about	a	problem	and	this	enables	

you	to	find	just	one	solution,	called	the	particular solution.

Suppose	that	in	the	previous	example,	in	which

d
d

y
x

	=	2x				⇒				y	=	x2	+	c

you	were	also	told	that	when	x =	2,	y	=	1.

Substituting	these	values	in	y	=	x2	+	c	gives

	1	=	22	+	c

	c	=	−3

and	so	the	particular	solution	is

y	=	x2	−	3.

This	is	the	red	curve	shown	in	figure	6.1.

y

x

c = 2

c = 0

c = –3

O

–3

2

Figure 6.1  y	=	x2	+	c	for different values of c

Recall from Activity 5.4 on page 130 
that for each member of a family of 

curves, the gradient is the same 
for any particular value of x.
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The rule for integrating xn 

Recall	the	rule	for	differentiation:

  y	 =	xn	 ⇒ 	d
d

y
x

	=	nxn − 1.

Similarly	 y	 =	xn + 1	 ⇒ 	d
d

y
x

	=	(n	+	1)xn

or	 y	 =	
1

1( )n + 	xn + 1	⇒ 	d
d

y
x

	=	xn.

Reversing	this,	integrating	xn	gives	 x
n

n+

+
1

1
.

This	rule	holds	for	all	real	values	of	the	power	n	except	–1.

Note

In words: to integrate a power of x, add 1 to the power and divide by the new power.

This works even when n is negative or a fraction.

! 	 Differentiating	x	gives	1,	so	integrating	1	gives	x.	This	follows	the	pattern	if	you	

remember	that	1	=	x0.

EXAMPLE 6.1  Given	that	
d
d

y
x

	=	3x 

2	+	4x	+	3

(i)	 find	the	general	solution	of	this	differential	equation

(ii)	 find	the	equation	of	the	curve	with	this	gradient	function	which	passes	

through	(1,	10).

SOLUTION

(i)	 By	integration,	y	=	3
3

4
2

3
3 2x x x c+ + + 	

  =	x3	+	2x 

2	+	3x	+	c,	where	c is	a	constant.

(ii)  Since	the	curve	passes	through	(1,	10),

	 10	=	13	+	2(1)2	+	3(1)	+	c

	 c	=	4

⇒	 y	=	x3	+	2x2	+	3x	+	4.
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EXAMPLE 6.2  A	curve	is	such	that	
d
d

y
x

x
x

= +3 8
2 .	Given	that	the	point	(4,	20)	lies	on	the	curve,	

find	the	equation	of	the	curve.

SOLUTION 

Rewrite	the	gradient	function	as	
d
d

y
x

x x= +3 8
1
2 2– .	

By	integration,	 y x x c= × + − +3 2
3

8
1

3
2

1–

	
y x

x
c= − +2 83

2

Since	the	curve	passes	through	the	point	(4,	20),

	 					20 2 4
3
2 8

4
= − +( ) c

	 ⇒	20	=	16	−	2	+	c

	 ⇒				c	=	6

So	the	equation	of	the	curve	is	y x
x

= − +2 8 6
3
2 .

EXAMPLE 6.3  The	gradient	function	of	a	curve	is	
d
d

y
x

	=	4x	−	12.

(i)	 The	minimum	y value	is	16.	By	considering	the	gradient	function,	find	the	

corresponding	x value.

(ii)	 Use	the	gradient	function	and	your	answer	from	part	(i)	to	find	the	equation	of	

the	curve.

SOLUTION

(i)	 At	the	minimum,	the	gradient	of	the	curve	must	be	zero,

	4x	−	12	=	0				⇒				x	=	3.

(ii)	
d
d

y
x

	=	4x	−	12

⇒	y  =	2x 

2	−	12x	+	c.

At	the	minimum	point,	x	=	3	and	y =	16

⇒	16	=	2	×	32	−	12	×	3	+	c

⇒ c	=	34

So	the	equation	of	the	curve	is	y	=	2x2	−	12x	+	34.

Dividing by 3
2

 is the same

as multiplying by 23 . 
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EXERCISE 6A   1  Given	that		
d
d

y
x

	=	6x2	+	5

(i)  find	the	general	solution	of	the	differential	equation

(ii)  find	the	equation	of	the	curve	with	gradient	function	
d
d

y
x

	and	which	passes	

through	(1,	9)

(iii) hence	show	that	(−1,	−5)	also	lies	on	the	curve.

2  The	gradient	function	of	a	curve	is	
d
d

y
x

	=	4x	and	the	curve	passes	through	the	

point	(1,	5).

(i)  Find	the	equation	of	the	curve.

(ii)  Find	the	value	of	y when	x =	−1.

3  The	curve	C passes	through	the	point	(2,	10)	and	its	gradient	at	any	point	is	

given	by	
d
d

y
x

	=	6x2.

(i)  Find	the	equation	of	the	curve	C.

(ii)  Show	that	the	point	(1,	−4)	lies	on	the	curve.

4  A	stone	is	thrown	upwards	out	of	a	window,	and	the	rate	of	change	of	its	

height	(h metres)	is	given	by	
d
d
h
t

	=	15	−	10t	where	t	is	the	time	(in	seconds).

	 When	t	=	0,	h =	20.

(i)  Show	that	the	solution	of	the	differential	equation,	under	the	given	

conditions,	is	h	=	20	+	15t	−	5t2.

(ii)  For	what	value	of	t does	h =	0?	(Assume	t 	0.)

5  (i)  Find	the	general	solution	of	the	differential	equation	
d
d

y
x

	=	5.

(ii)  Find	the	particular	solution	which	passes	through	the	point	(1,	8).

(iii) Sketch	the	graph	of	this	particular	solution.

6  The	gradient	function	of	a	curve	is	3x2	−	3.	The	curve	has	two	stationary	

points.	One	is	a	maximum	with	a	y value	of	5	and	the	other	is	a	minimum	

with	a	y value	of	1.

(i)  Find	the	value	of	x at	each	stationary	point.	Make	it	clear	in	your	solution	

how	you	know	which	corresponds	to	the	maximum	and	which	to	the	

minimum.

(ii)  Use	the	gradient	function	and	one	of	your	points	from	part (i)	to	find	the	

equation	of	the	curve.

(iii) Sketch	the	curve.
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7  A	curve	passes	through	the	point	(4,	1)	and	its	gradient	at	any	point	is	given	

by	
d
d

y
x

	=	2x	−	6.

(i)  Find	the	equation	of	the	curve.

(ii)  Draw	a	sketch	of	the	curve	and	state	whether	it	passes	under,	over	or	

through	the	point	(1,	4).

8  A	curve	passes	through	the	point	(2,	3).	The	gradient	of	the	curve	is	given	by
d
d

y
x

	=	3x2	−	2x	−	1.

(i)  Find	y	in	terms	of	x.

(ii)  Find	the	co-ordinates	of	any	stationary	points	of	the	graph	of	y.

(iii) Sketch	the	graph	of	y against	x,	marking	the	co-ordinates	of	any	

stationary	points	and	the	point	where	the	curve	cuts	the	y	axis.
[MEI]

9  The	gradient	of	a	curve	is	given	by	
d
d

y
x

	=	3x2	−	8x	+	5.	The	curve	passes	

through	the	point	(0,	3).

(i)  Find	the	equation	of	the	curve.

(ii)  Find	the	co-ordinates	of	the	two	stationary	points	on	the	curve.	

State,	with	a	reason,	the	nature	of	each	stationary	point.

(iii) State	the	range	of	values	of	k	for	which	the	curve	has	three	distinct	

intersections	with	the	line	y	=	k.	

(iv)  State	the	range	of	values	of	x	for	which	the	curve	has	a	negative	gradient.	

Find	the	x	co-ordinate	of	the	point	within	this	range	where	the	curve	is	

steepest.	 	
  [MEI]

10  A	curve	is	such	that	
d
d

y
x

x= .	Given	that	the	point	(9,	20)	lies	on	the	curve,	

	 find	the	equation	of	the	curve.

11  A	curve	is	such	that	
d
d

y
x x
= −2 3

2
.	Given	that	the	point	(2,	10)	lies	on	the	

	 curve,	find	the	equation	of	the	curve.

12  A	curve	is	such	that	
d
d

y
x

x
x

= + 1
2
.	Given	that	the	point	(1,	5)	lies	on	the	

	 curve,	find	the	equation	of	the	curve.

13  A	curve	is	such	that	
d
d

y
x

x= +3 52 .	Given	that	the	point	(1,	8)	lies	on	the	

	 curve,	find	the	equation	of	the	curve.

14  A	curve	is	such	that	
d
d

y
x

x= −3 9	and	the	point	(4,	0)	lies	on	the	curve.

(i)  Find	the	equation	of	the	curve.

(ii)  Find	the	x	co-ordinate	of	the	stationary	point	on	the	curve	and	

determine	the	nature	of	the	stationary	point.
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15  The	equation	of	a	curve	is	such	that	
d
d

y
x x

x= −3 .	Given	that	the	curve	passes	

	 through	the	point	(4,	6),	find	the	equation	of	the	curve.

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q1 November 2009] 

16  A	curve	is	such	that	
d
d

y
x

x= −4 	and	the	point	P(2,	9)	lies	on	the	curve.	The	

	 normal	to	the	curve	at	P	meets	the	curve	again	at	Q.	Find

(i)  the	equation	of	the	curve,

(ii)  the	equation	of	the	normal	to	the	curve	at	P,

(iii)  the	co-ordinates	of	Q.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q9 November 2007]

Finding the area under a curve

Figure	6.2	shows	a	curve	y =	f(x)	and	the	area	required	is	shaded.

P	is	a	point	on	the	curve	with	an	x	co-ordinate	between	a and	b.	Let	A	denote	the	

area	bounded	by	MNPQ.	As	P	moves,	the	values	of	A	and	x change,	so	you	can	

see	that	the	area	A	depends	on	the	value	of	x.	Figure	6.3	enlarges	part	of	figure	6.2	

and	introduces	T	to	the	right	of	P.

O

y

xx ba
M

N

P(x, y)

y = f(x)

Q

Figure 6.2 

x

P

y

S

TU

y + δy

Q R
x + δx

δA

Figure 6.3 
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If	T	is	close	to	P it	is	appropriate	to	use	the	notation	δx	(a	small	change	in	x)

for	the	difference	in	their	x	co-ordinates	and	δy	for	the	difference	in	their	y 

co-ordinates.	The	area	shaded	in	figure	6.3	is	then	referred	to	as	δA	(a	small	

change	in	A).

This	area	δA	will	lie	between	the	areas	of	the	rectangles	PQRS	and	UQRT

yδx	 δA		(y	+	δy)δx.

Dividing	by	δx

y	 δ
δ
A
x

		y	+	δy.

In	the	limit	as	δx	→	0,	δy	also	approaches	zero	so	δA	is	sandwiched	between y	and	

something	which	tends	to	y.

But					lim				
δ
δ
A
x

A
x

= d
d

. 	
             δx → 0

This	gives	d
d
A
x

	=	y.

Note

This important result is known as the fundamental theorem of calculus: the rate of 

change of the area under a curve is equal to the length of the moving boundary.

EXAMPLE 6.4  Find	the	area	under	the	curve	y =	6x5	+	6	between	x =	−1	and	x =	2.

SOLUTION

Let	A	be	the	shaded	area	which	is	bounded	by	the	curve,	the	x	axis,	and	the	

moving	boundary	PQ	(see	figure	6.4).

Then	 d
d
A
x

		=	y	=	6x5	+	6.

O–1 2 x

y

Q

6
P

(x, y)

Figure 6.4 

Notice that the 
curve crosses 

the x axis when 
x = –1.
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Integrating,	A =	x6	+	6x	+	c.

When	x =	−1,	the	line	PQ	coincides	with	the	left-hand	boundary	so	A =	0

⇒ 0	=	1	−	6	+	c
⇒ c	=	5.

So	A =	x6	+	6x	+	5.

The	required	area	is	found	by	substituting	x =	2

A =	64	+	12	+	5

				=	81	square	units.

Note

The term ‘square units’ is used since area is a square measure and the units are 

unknown.

Standardising the procedure

Suppose	that	you	want	to	find	the	area	between	the	curve	y =	f(x),	the	x axis,	and	

the	lines	x =	a and	x =	b.	This	is	shown	shaded	in	figure	6.5.

●●
d
d
A
x 	

=	y	=	f(x).

●● Integrate	f(x)	to	give	A	=	F(x)	+	c.

●● A	=	0	when	x	=	a	⇒		 0	 =	F(a)	+	c

	 ⇒	 c	 =	−F(a)

	 ⇒	 A	 =	F(x)	−	F(a).

●● The	value	of	A when	x =	b is	F(b)	−	F(a).

Notation

F(b)	−	F(a)	is	written	as	[ ( )] .F x a
b

O b x

y

a

y = f(x)

Figure 6.5 
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EXAMPLE 6.5  Find	the	area	between	the	curve	y =	20	−	3x2,	the	x	axis	and	the	lines	x =	1	and	x =	2.

SOLUTION

f(x)	=	20	−	3x2	⇒	F(x)	=	20x	−	x3

a	=	1	and	b	=	2

⇒	 Area	=	[ – ]20 3
1
2x x

	 	 =	(40	−	8)	−	(20	−	1)

	 	 =	13	square	units.

Area as the limit of a sum

Suppose	you	want	to	find	the	area	between	the	curve	y	=	x2	+	1,	the	x	axis	and	the	

lines	x =	1	and	x =	5.	This	area	is	shaded	in	figure	6.6.

You	can	find	an	estimate	of	the	shaded	area,	A,	by	considering	the	area	of	four	

rectangles	of	equal	width,	as	shown	in	figure	6.7.

A

x

y
y = x2 + 1

O 1 5

Figure 6.6 

x

y y = x2 + 1

0

2

5

10

17

1 2 3 4 5

Figure 6.7 
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The	estimated	value	of	A is

2	+	5	+	10	+	17	=	34	square	units.

This	is	an	underestimate.

To	get	an	overestimate,	you	take	the	four	rectangles	in	figure	6.8.

The	corresponding	estimate	for	A is

5	+	10	+	17	+	26	=	58	square	units.

This	means	that	the	true	value	of	A	satisfies	the	inequality

																																				34		A		58.

If	you	increase	the	number	of	rectangles,	your	bounds	for	A	become	closer.	The	

equivalent	calculation	using	eight	rectangles	gives

1 5 513
8

5
2

29
8

53
8

17
2

85
8

13
8

5
2

29
8

53
8

1+ + + + + + + < < + + + + +A 77
2

85
8 13+ +

	
	 39.5	<	 A	<	51.5.

Similarly	with	16	rectangles

42.375		A		48.375

and	so	on.	With	enough	rectangles,	the	bounds	for	A	can	be	brought	as	close	

together	as	you	wish.

ACTIVITY 6.1  Use	ICT	to	get	the	bounds	closer.

																	  

x

y
y = x2 + 1

0

1
5

10

17

26

1 2 3 4 5

Figure 6.8 
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Notation

This	process	can	be	expressed	more	formally.	Suppose	you	have	n rectangles,	

each	of	width	δx.	Notice	that	n	and	δx	are	related	by

nδx	=	width	of	required	area.

So	in	the	example	above,

n δx	=	5	−	1	=	4.

In	the	limit,	as	n	→ ∞,	δx	→	0,	the	lower	

estimate	→	A	and	the	higher	estimate	→	A.

The	area	δA	of	a	typical	rectangle	may	be	

written	y
i

δx	where	y
i
	is	the	appropriate	

y	value	(see	figure	6.9).

So	for	a	finite	number	of	strips,	n,	as	shown	in	figure	6.10,	the	area	A	is	given	
approximately	by

 A		δA1	+	δA2	+	…	+	δAn

or	 A		y1δx	+	y2δx	+	…	+	ynδx.

This	can	be	written	as	A	 δAi
i

i n

=

=

∑
1 	

or	 A		 y xi
i

i n

δ .
=

=

∑
1

In	the	limit,	as	n	→ ∞	and	δx	→	0,	the	result	is	no	longer	an	approximation;	it	is	

exact.	At	this	point,	A		Σ yi  δx is	written	A	=	∫y dx,	which	you	read	as	‘the	
integral	of	y with	respect	to	x’.	In	this	case	y	=	x 2	+	1,	and	you	require	the	area	for	
values	of	x	from	1	to	5,	so	you	can	write

A	=	∫5

1
(x2	+	1)dx.

yi

δx

δA
i
  y

i
δx

Figure 6.9 

Σ means ‘the sum of’ so 
all the δAi are added from 

δA1	(given by i = 1) to δAn 
(when i = n).

y

yn

y4
y3
y2y1

δA1 δA2 δA3 δA4

xO

δAn

Figure 6.10 
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Notice	that	in	the	limit:

●● ●	is	replaced	by	= 

●● ●δx	is	replaced	by	dx

●● ●Σ●is	replaced	by	∫ ,	the	integral	sign	(the	symbol	is	the	Old	English	letter	S)

●● ●instead	of	summing	for	i =	1	to	n the	process	is	now	carried	out	over	a	range	

of	values	of	x (in	this	case	1	to	5),	and	these	are	called	the	limits of	the	integral.	

(Note	that	this	is	a	different	meaning	of	the	word	limit.)

This	method	must	give	the	same	results	as	the	previous	one	which	used	d
d
A
x

	=	y,	

and	at	this	stage	the	notation	 F x
a

b( )[ ]
	
is	used	again.

In	this	case
	
∫

5

1
(x2	+	1)	dx	=	 x x

3

1

5

3
+





.
	 	 	 			

Recall	that	this	notation	means:	find	the	value	of	x
3

3 	
+	x when	x	=	5	(the	upper	

limit)	and	subtract	the	value	of	x
3

3 	
+	x when	x	=	1	(the	lower	limit).

x x
3

1

5 3 3

3
5
3

5 1
3

1 451
3

+





= +



 +



 =– .

So	the	area	A is	451
3	

square	units.

EXAMPLE 6.6  Find	the	area	under	the	curve	y	=	4x3	+	4	between	x	=	−1	and	x	=	2.

SOLUTION

The	graph	is	shown	in	figure	6.11.

The	shaded	part,	A	

=	∫ 2

−1
(4x3	+	4)	dx

	

The limits have now 
moved to the right of the 

square brackets.

y

2

4

–1 x

A

O

Figure 6.11 

= +

= + +
=

[ ]

( ( )) – ((– ) (– ))

–x x4
1

2

4 4

4

2 4 2 1 4 1

27 square unitts.
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EXAMPLE 6.7  Evaluate	the	definite	integral	
4

9 3
2∫ x xd 	

SOLUTION

4

9

4

9

4

9

3
2

5
2

5
2

5
2

5

5
2

2
5

2
5

9 4

∫ =
















= 





= −

x x
x

x

d

22

2
5

243 32

84 2
5

( )
= −( )
= .

This	gives	the	shaded	area	in	figure	6.12.

Definite integrals

Expressions	like	∫ 2

−1
(4x3	+	4)	dx	and	

4

9 3
2∫ x xd  in	Examples	6.6	and	6.7	are	called	

definite integrals. A	definite	integral	has	an	upper	limit	and	a	lower	limit	and	can	

be	evaluated	as	a	number.	In	the	case	of	Example	6.6	the	definite	integral	is	27.

Note

In Example 6.6 you found that the value of ∫ 2

–1 
(4x3 + 4) dx was 27. If you evaluate 

∫ –1

2 
(4x3 + 4) dx	you will find its value is –27. 

Consider ∫ b

a
f(x) dx = F(b) − F(a),

So ∫ a

b
f(x) dx = F(a) − F(b)

  = −(F(b) − F(a))

  = −∫ b

a
f(x) dx

In general, interchanging the limits of a definite integral has the effect of reversing 

the sign of the answer.

O 4 9 x

y
y = x3–2

Figure 6.12 

To divide by a fraction, 
invert it and multiply.

3
2

1
5
2

+ =
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ACTIVITY 6.2  Figure	6.13	shows	the	region	bounded	by	the	graph	of	y	=	x	+	3,	the	x	axis	and	the	

lines	x	=	a	and	x	=	b.

(i)	 Find	the	shaded	area,	A,	by	considering	it	as	the	difference	between	the	two	

trapezia	shown	in	figure	6.14.

(ii)	 Show	that	the	expression	for	A	you	obtained	in	part	(i)	may	be	written	as	

	 x x
a

b2

2
3+





.
	

(iii) Show	that	you	obtain	the	same	answer	for	A	by	integration.

O a b x

3

y

y = x + 3

Figure 6.13

O a b x

3

b + 3

y

y = x + 3

O a x

3

y

y = x + 3

a + 3

Figure 6.14 
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EXAMPLE 6.8  Evaluate	
1

2
4 2

3 1 4∫ − +( )x x
xd .

SOLUTION 

1

2

4 2 1

2 4 2

3 1

3 1 4 3 4

3
3 1

∫ ∫− +( ) = − +( )

= − − −

− −

− −

x x
x x x x

x x

d d

++





= − + +





= − + +( ) − +

4

1 1 4

8 1 1

1

2

3
1

2

1
8

1
2

x

x x
x

– ++( )
=

4

4 3
8

Indefinite integrals

The	integral	symbol	can	be	used	without	the	limits	to	denote	that	a	function	is	to	

be	integrated.	Earlier	in	the	chapter,	you	saw	
d
d

y
x 	

=	2x	⇒	y =	x2	+	c.

An	alternative	way	of	expressing	this	is	

∫2x	dx	=	x2	+	c.

EXAMPLE 6.9  Find	∫(2x3	−	3x	+	4)	dx.

SOLUTION

∫(2x3	−	3x	+	4)	dx		= + +

= + +

2
4

3
2

4

2
3
2

4

4 2

4 2

x x
x c

x x
x c

–

– .

	

	

EXAMPLE 6.10  Find	the	indefinite	integral		 x x x
3
2 +( )∫ d .

SOLUTION 

x x x x x x

x x c

3
2

3
2

1
2

5
2

3
22

5
2
3

+( ) = +( )
= + +

∫ ∫d d

Read as ‘the 
integral of 2x with 

respect to x’.

3
2

1
5
2

5
2

2
5

+ = , and dividing by 

3
2

1
5
2

5
2

2
5

+ =

 is

the same as multiplying by 

3
2

1
5
2

5
2

2
5

+ =

.
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EXERCISE 6B   1  Find	the	following	indefinite	integrals.

(i)  	 ∫3x 2 dx	 (ii)	 ∫(5x 4 + 7x 6) dx	

(iii)  	 ∫(6x 2 + 5) dx (iv)	 ∫(x 3 + x 2 + x  + 1) dx	

(v)  	 ∫(11x 10 + 10x 9) dx	 (vi)	 ∫(3x 2 + 2x + 1) dx

(vii) 	 ∫(x 2 + 5) dx	 (viii)	 ∫5 dx	

(ix)  	 ∫(6x 2 + 4x) dx	 (x)	 ∫(x 4 + 3x 2 + 2x + 1) dx	

2  Find	the	following	indefinite	integrals.

(i)  	 ∫10x –4 dx	 (ii)	 ∫(2x − 3x –4) dx	

(iii)  	 ∫(2 + x 3	+ 5x –3) dx (iv)	 ∫(6x 2 − 7x –2 ) dx	

(v)  	 ∫ 5
1
4x x∫ d   	 (vi)	 ∫ 1

4x
xd∫

(vii) 	 ∫ x x∫ d 	 (viii)	 ∫ 2 44
2

x
x

x−( )∫ d 	 	

3  Evaluate	the	following	definite	integrals.

(i)  ∫ 2

1
2x  dx	 (ii)	 ∫ 3

0
2x  dx 

(iii)  ∫ 3

0
3x 2 dx (iv)  ∫ 5

1
x dx 

(v)  ∫ 6

5
(2x	 + 	1) dx	 (vi)	 ∫ 2

−1
(2x 	+		4) dx

(vii) ∫ 5

3
(3x 2	+	2x) dx	 (viii)	 ∫ 1

0
x5 dx

(ix)  ∫ −1

−2
(x 4	+	x 3) dx (x)  ∫ 1

−1
x3 dx	

(xi)  ∫ 4

−5
(x 3 +	3x ) dx	 (xii)	 ∫ −2

−3
5 dx

4  Evaluate	the	following	definite	integrals.

(i)  	 ∫ 4

1
3x–2 dx	 (ii)	 ∫ 4

2
8x –3 dx	

(iii)  	 ∫ 4

1
12

1
2x x∫ d    (iv)	 ∫ –1

–3
6
3x

xd∫ 	

(v)  	 ∫ 2

0.5
x x

x
x

2

4
3 4+ +



∫ d  	 (vi)	 ∫ 9

4 x
x

x−



∫ 1 d
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5  The	graph	of	y	=	2x	

is	shown	here.

The	shaded	region	is	bounded		
by	y	=	2x,	the	x	axis	and	the	
lines	x	=	2	and	x	=	3.

(i)  Find	the	co-ordinates	of	

the	points	A	and	B	in	the	

diagram.

(ii)  Use	the	formula	for	the	area	

of	a	trapezium	to	find	the	

area	of	the	shaded	region.

(iii) Find	the	area	of	the	shaded	

region	as	∫ 3

2
2x dx,	and	

confirm	that	your	answer	is	

the	same	as	that	for	part	(ii).

(iv)  The	method	of	part	(ii)	cannot	be	used	to	find	the	area	under	the	curve	

y	=	x2	bounded	by	the	lines	x	=	2	and	x	=	3.	Why?

6  (i)  	Sketch	the	curve	y	=	x 2	for	−1		x		3	and	shade	the	area	bounded	by	the	

curve,	the	lines	x	= 1	and	x	= 2	and	the	x	axis.

(ii)  Find,	by	integration,	the	area	of	the	region	you	have	shaded.

7  (i)  Sketch	the	curve	y	=	4	− x 2	for	−3		x		3.

(ii)  For	what	values	of	x	is	the	curve	above	the	x	axis?

(iii)  Find	the	area	between	the	curve	and	the	x	axis	when	the	curve	is	above	the	

x	axis.

8  (i)  	Sketch	the	graph	of	y =	(x	−	2)2	for	values	of	x	between	x	=	−1	and	x	=	+5.	

Shade	the	area	under	the	curve,	between	x	=	0	and	x	=	2.

(ii)  Calculate	the	area	you	have	shaded.	 	 	 [MEI]

9  The	diagram	shows	the	

	 graph	of	y x
x

= + 1 	

	 for	x 	0.

The	shaded	region	is	

bounded	by	the	curve,	the	x	

axis	and	the	lines	x	=	1	and	

x	=	9.

Find	its	area.

y

2

A

3

B

x

y

1O 9 x

y =    x 1
x+
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10  (i)  	Sketch	the	graph	of	y	=	(x	+	1)2	for	values	of	x	between	x	=	−1	and	x	=	4.

(ii)  Shade	the	area	under	the	curve	between	x	=	1,	x	=	3	and	the	x	axis.	

Calculate	this	area.	 	 [MEI]

11  (i)  	Sketch	the	curves	y	=	x2	and	y	=	x3	for	0		x		2.

(ii)  Which	is	the	higher	curve	within	the	region	0		x		1?

(iii) Find	the	area	under	each	curve	for	0		x		1.

(iv)  Which	would	you	expect	to	be	greater,	∫ 2

1
x2 dx	or	∫ 2

1
x3 dx?

  Explain	your	answer	in	terms	of	your	sketches,	and	confirm	it	by	

calculation.

12  (i)  Sketch	the	curve	y	=	x2	− 1	for	−3		x		3.

(ii)  Find	the	area	of	the	region	bounded	by	y	=	x2	− 1,	the	line	x =	2	and	the	

x	axis.

(iii) Sketch	the	curve	y	=	x2	−	2x	for	−2		x		4.

(iv)  Find	the	area	of	the	region	bounded	by	y	=	x 

2	−	2x,	the	line	x	=	3	and	the	

x	axis.

(v)  Comment	on	your	answers	to	parts	(ii)	and	(iv).

13  (i)  	Shade,	on	a	suitable	sketch,	the	region	with	an	area	given	by

∫ 2

−1
(9	−	x2) dx.

					

(ii)  Find	the	area	of	the	shaded	region.

14  (i)  	Sketch	the	curve	with	equation	y	=	x2	+ 1	for	−3		x		3.

(ii)  Find	the	area	of	the	region	bounded	by	the	curve,	the	lines	x	=	2	and	

x	=	3,	and	the	x	axis.

(iii) Predict,	with	reasons,	the	value	of	∫ −2

−3
(x2	+ 1) dx.

(iv)  Evaluate	∫ −2

−3
(x2	+ 1) dx.

15  (i)  	Sketch	the	curve	with	equation	y	=	x2	−	2x	+	1	for	−1		x		4.

(ii)  State,	with	reasons,	which	area	you	would	expect	from	your	sketch	to	

be	larger:

∫ 3

−1
(x2	−	2x	+ 1) dx	 	 	 or	 	 	 ∫ 4

0
(x2	−	2x	+ 1) dx.

(iii) Calculate	the	values	of	the	two	integrals.	Was	your	answer	to	part	(ii)	

correct?
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16  (i)  	Sketch	the	curve	with	equation	y	=	x3	−	6x2	+	11x	−	6	for	0		x		4.

(ii)  Shade	the	regions	with	areas	given	by

(a)  ∫ 2

1
(x3	−	6x2	+ 11x −	6) dx

(b)  ∫ 4

3
(x3	−	6x2	+ 11x −	6) dx.

(iii) Find	the	values	of	these	two	areas.

(iv)  Find	the	value	of	∫ 1.5

1
(x3	−	6x2	+ 11x −	6) dx.

What	does	this,	taken	together	with	one	of	your	answers	to	part	(iii),	

indicate	to	you	about	the	position	of	the	maximum	point	between		

x =	1	and	x =	2?

17  Find	the	area	of	the	region	enclosed	by	the	curve	y	=	3 x ,	the	x	axis	and	the	

lines	x	=	0	and	x	=	4.

18  A	curve	has	equation	y
x

= 4 .

(i)  The	normal	to	the	curve	at	the	point	(4,	2)	meets	the	x	axis	at	P	and	the	y	

axis	at	Q.	Find	the	length	of	PQ,	correct	to	3	significant	figures.

(ii)  Find	the	area	of	the	region	enclosed	by	the	curve,	the	x	axis	and	the	lines	

x	=	1	and	x	=	4.
  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q9 June 2005]

19  The	diagram	shows	a	curve	for	which	
d
d

y
x

k
x

= −
3
,	where	k	is	a	constant.	The	

	 curve	passes	through	the	points	(1,	18)	and	(4,	3).

(i)  Show,	by	integration,	that	the	equation	of	the	curve	is	y
x

= +16 2
2

.

The	point	P	lies	on	the	curve	and	has	x	co-ordinate	1.6.

(ii)  Find	the	area	of	the	shaded	region.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q9 June 2008]

y

1O 1.6 x

(1, 18)

(4, 3)

P
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20  A	curve	is	such	that	
d
d

y
x x

= 16
3
,	and	(1,	4)	is	a	point	on	the	curve.

(i)  Find	the	equation	of	the	curve.

(ii)  A	line	with	gradient	−1
2 	

is	a	normal	to	the	curve.	Find	the	equation	of	this	

normal,	giving	your	answer	in	the	form	ax	+	by	=	c.

(iii) Find	the	area	of	the	region	enclosed	by	the	curve,	the	x	axis	and	the	lines	

x	=	1	and	x	=	2.
  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 November 2005]

21  The	equation	of	a	curve	is	y x
x

= +2 8
2 .

(i)  Obtain	expressions	for	
d
d

and
d

d

y
x

y

x

2

2
.

(ii)  Find	the	co-ordinates	of	the	stationary	point	on	the	curve	and	determine	

the	nature	of	the	stationary	point.

(iii) Show	that	the	normal	to	the	curve	at	the	point	(–2,	–2)	intersects	the	

x	axis	at	the	point	(–10,	0).

(iv)  Find	the	area	of	the	region	enclosed	by	the	curve,	the	x	axis	and	the	lines	

x	=	1	and	x	=	2.
  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 June 2007]

Areas below the x axis

When	a	graph	goes	below	the	x	axis,	the	corresponding	y	value	is	negative	and	so	

the	value	of	y	δx	is	negative	(see	figure	6.15).	So	when	an	integral	turns	out	to	be	

negative	you	know	that	the	area	is	below	the	x	axis.

y

x

negative y value

δx

Figure 6.15 

For the shaded region 
yδx is negative.
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EXAMPLE 6.11  Find	the	area	of	the	region	bounded	by	the	curve	with	equation	y
x

= −2 3
2

,	the	

lines	x	=	2	and	x	=	4,	and	the	x	axis.

SOLUTION

The	region	in	question	is	shaded	in	figure	6.16.

The	shaded	area	is

	
A

x
x

x x

x x

= −( )
= −( )

= −






∫

∫ −

−

2

4

2

2

4 2

1

2

2 3

2 3

2
1

3

d

d

( )
–

44

2

4
2 3

12 1 6

5 5

1
2

= −





= − −( ) − − −

= −

x
x–

( )

.

	

	

Therefore	the	shaded	area	is	5.5	square	units,	and	it	is	below	the	x	axis.

y

x
2 4

y =     – 32
x2

O

Figure 6.16 
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EXAMPLE 6.12  Find	the	area	between	the	curve	and	the	x	axis	for	the	function	y	=	x2	+	3x	

between	x	=	−1	and	x	=	2.

SOLUTION

The	first	step	is	to	draw	a	sketch	of	the	function	to	see	whether	the	curve		

goes	below	the	x	axis	(see	figure	6.17).

This	shows	that	the	y	values	are	positive	for	0		x		2	and	negative	for	−1		x		0.	

You	therefore	need	to	calculate	the	area	in	two	parts.

Area dA x x x

x x

= +

= +





= +(

∫ ( )

– –

–

–

2

1

0

3 2

1

0

3

3
3
2

0 1
3

3
2))

=

= +

= +





= +

∫

– .

( )

7
6

8
3

2

0

2

3 2

0

2

3

3
3
2

6

Area dB x x x

x x

(( )
=

= +

=

–

.

0

26
3

7
6

26
3

59
6

Total area

square units.

	

y

x2

–1

A

B

y = x2 + 3x

Figure 6.17 
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EXERCISE 6C   1   Sketch	each	of	these	curves	and	find	the	area	between	the	curve	and	the	x	axis	

between	the	given	bounds.

(i)  	 y	=	x3	between	x	=	−3	and	x	=	0.

(ii)  	 y	=	x2	−	4	between	x	=	−1	and	x	=	2.

(iii)  	 y	=	x5	−	2	between	x	=	−1	and	x	=	0.

(iv)  	 y	=	3x2	−	4x	between	x	=	0	and	x	=	1.

(v)  	 y	=	x4	−	x2	between	x	=	−1	and	x	=	1.

(vi)  	 y	=	4x3	−	3x2	between	x	=	−1	and	x	=	0.5.

	(vii) 	 y	=	x5	−	x3	between	x	=	−1	and	x	=	1.

(viii)  y	=	x2	−	x	−	2	between	x	=	−2	and	x	=	3.

(ix)  	 y	=	x3	+	x2	−	2x	between	x	=	−3	and	x	=	2.

(x)  	 y	=	x3	+	x2	between	x	=	−2	and	x	=	2.

2  The	diagram	shows	a	sketch	of	part	of	the	curve	with	equation	y	=	5x4	−	x5.

(i)  Find	
d
d

y
x .

  Calculate	the	co-ordinates	of	the	stationary	points.

(ii)  Calculate	the	area	of	the	shaded	region	enclosed	by	the	curve	and	the	x	axis.

(iii) Evaluate	∫ 6

0
x4(5	−	x)	dx	and	comment	on	your	result.	 	

  [MEI]

3  (i)  (a)	 Find	
1
4

1
2 1 8

3∫ −( )x
xd .

	
dx.

  (b)  Find	
1
2

1

3
1 8∫ −( )x

xd .
	
dx.

(ii)  Hence	find	the	total	area	of	the	regions	bounded	by	the	curve	y
x

= −1 8
3

,	

the	lines	x	=	1
4
	and	x	=	1	and	the	x	axis.

4  (i)  (a)	 Find	
0

4
2 2∫ −( )x x xd .

  (b)  Find	
4

9
2 2∫ −( )x x xd .

(ii)  Hence	find	the	total	area	of	the	regions	bounded	by	the	curve

  y x x= −( )2 2 ,	the	line	x	=	9	and	the	x axis.

x

y
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The area between two curves

EXAMPLE 6.13  Find	the	area	enclosed	by	the	line	y	=	x	+	1	and	the	curve	y	=	x2	−	2x	+	1.

SOLUTION

First	draw	a	sketch	showing	where	these	graphs	intersect	(see	figure	6.18).

When	they	intersect

 x 2	−	2x	+	1	=	x	+	1
⇒ x2	−	3x	=	0
⇒ x	(x −	3)	=	0
⇒ x	=	0	or	x	=	3.

The	shaded	area	can	now	be	found	in	one	of	two	ways.

Method 1

Area	A	can	be	treated	as	the	difference	between	the	two	areas,	B	and	C,	shown	in		

figure	6.19.

y

x1O 3

A

y = x2 – 2x + 1

y = x + 1

Figure 6.18

B

y

x1O 3

C

y

x1O 3

y = x2 – 2x + 1y = x + 1

Figure 6.19
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A	 =	B	−	C

	 =	∫ 3

0
(x	+	1)	dx	−	∫ 3

0
(x 2	−	2x	+	1)	dx

	 = +





+





= +( ) 

x x x x x
2

0

3 3
2

0

3

2 3

3 09
2

27

– –

– –
33

9
2

9 3 0– –+( ) 

= square units.

Method 2

	 	 A x

x x x

=

= + +

∫ { }

( ) – ( – )

top curve – bottom curve d
0

3

21 2 1(( )
=

= 





=  

∫

∫

d

d

x

x x x

x x

0

3

2

0

3

2 3

0

3

3

3
2 3

927
2

( – )

–

– 

=

– [ ]

.

0

9
2

square units

EXERCISE 6D   1   The	diagram	shows	the	curve	

y	=	x2	and	the	line	y	=	9.	

The	enclosed	region	has	been	shaded.

(i)  Find	the	two	points	of	

intersection	(labelled	A	and	B).

(ii)  Using	integration,	show	that	

the	area	of	the	shaded	region		

is	36	square	units.

y

xO 1 3

y = x2 – 2x + 1

y = x + 1

Figure 6.20 

The height of this rectangle 
is the height of the top 

curve minus the height of 
the bottom curve.

y

xO

A B

y = x2  

y = 9
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2  (i)  	Sketch	the	curves	with	equations	y	=	x2	+	3	and	y	=	5	−	x2	on	the	same	

axes,	and	shade	the	enclosed	region.

(ii)  Find	the	co-ordinates	of	the	points	of	intersection	of	the	curves.

(iii) Find	the	area	of	the	shaded	region.

3  (i)  	Sketch	the	curve	y	=	x3	and	the	line	y	=	4x	on	the	same	axes.

(ii)  Find	the	co-ordinates	of	the	points	of	intersection	of	the	curve	y =	x3	and	

the	line	y	=	4x.

(iii) Find	the	total	area	of	the	region	bounded	by	y	=	x3	and y	=	4x.

4  (i)  	Sketch	the	curves	with	equations	y	=	x2	and	y	=	4x	−	x2.

(ii)  Find	the	co-ordinates	of	the	points	of	intersection	of	the	curves.

(iii) Find	the	area	of	the	region	enclosed	by	the	curves.

5  (i)  	Sketch	the	curves	y	=	x2	and	y	=	8	−	x2	and	the	line	y	=	4	on	the	same	

axes.

(ii)  Find	the	area	of	the	region	enclosed	by	the	line	y	=	4	and	the	curve	y	=	x2.

(iii) Find	the	area	of	the	region	enclosed	by	the	line	y	=	4	and	the	curve	

y	=	8	−	x2.

(iv)  Find	the	area	enclosed	by	the	curves	y	=	x2	and	y	=	8	−	x2.

6  (i)  	Sketch	the	curve	y	=	x2	−	6x	and	the	line	y	=	−5.

(ii)  Find	the	co-ordinates	of	the	points	of	intersection	of	the	line	and	the	

curve.

(iii) Find	the	area	of	the	region	enclosed	by	the	line	and	the	curve.

7  (i)  	Sketch	the	curve	y	=	x(4	−	x)	and	the	line	y	=	2x	−	3.

(ii)  Find	the	co-ordinates	of	the	points	of	intersection	of	the	line	and	the	

curve.

(iii) Find	the	area	of	the	region	enclosed	by	the	line	and	the	curve.

8  Find	the	area	of	the	region	enclosed	by	the	curves	with	equations	y	=	x2	−	16	

and	y	=	4x	−	x2.

9  Find	the	area	of	the	region	enclosed	by	the	curves	with	equations	y	=	−x2	−	1	

and	y	=	−2x2.

10  (i)  	Sketch	the	curve	with	equation	y	=	x3	+	1	and	the	line	y	=	4x	+	1.

(ii)  Find	the	areas	of	the	two	regions	enclosed	by	the	line	and	the	curve.

11  The	diagram	shows	the	curve

y	=	5x	−	x2	and	the	line	y	=	4.

	 Find	the	area	of	the	shaded	region.

  	

y

xO

y = 5x – x2  

y = 4
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12   The	diagram	shows	the	curve	with	equation	y	=	x2(3	−	2x −	x2).	P	and	Q	are	

points	on	the	curve	with	co-ordinates	(−2,	12)	and	(1,	0)	respectively.

(i)  Find	
d
d

y
x

.

(ii)  Find	the	equation	of	the	line	PQ.

(iii) Prove	that	the	line	PQ	is	a	tangent	to	the	curve	at	both	P	and	Q.

(iv)  Find	the	area	of	the	region	bounded	by	the	line	PQ	and	that	part	of	the	

curve	for	which	−2		x		1.	 	
  [MEI]

13  The	diagram	shows	the	graph	of	y	=	4x	−	x3.	The	point	A	has	co-ordinates	

(2,	0).

(i)  Find	
d
d

y
x

.

  Then	find	the	equation	of	the	tangent	to	the	curve	at	A.

(ii)  The	tangent	at	A	meets	the	curve	again	at	the	point	B.	

Show	that	the	x	co-ordinate	of	B	satisfies	the	equation	x3	−	12x	+	16	=	0.

  Find	the	co-ordinates	of	B.

(iii) Calculate	the	area	of	the	shaded	region	between	the	straight	line	AB	and	

the	curve.	 	
  [MEI]

x

y
P

Q

x

y

A

O

B

2
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14   The	diagram	shows	the	curve	y	=	(x	−	2)2	and	the	line	y	+	2x	=	7,	which	

intersect	at	points	A	and	B.

Find	the	area	of	the	shaded	region.	

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q9 June 2010]

15   The	diagram	shows	the	curve	y	=	x3	–	6x 2	+	9x	for	x		0.	The	curve	has	a	

maximum	point	at	A	and	a	minimum	point	on	the	x	axis	at	B.	The	normal	to	

the	curve	at	C(2,	2)	meets	the	normal	to	the	curve	at	B	at	the	point	D.

(i)  Find	the	co-ordinates	of	A	and	B.

(ii)  Find	the	equation	of	the	normal	to	the	curve	at	C.

(iii) Find	the	area	of	the	shaded	region.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q11 June 2009]

y

y + 2x = 7 y = (x – 2)2

x

B

A

y

xO

A

C D

B

y = x3 – 6x2 + 9x
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The area between a curve and the y axis

So	far	you	have	calculated	areas	between	curves	and	the	x	axis.	You	can	also	use	

integration	to	calculate	the	area	between	a	curve	and	the	y	axis.	In	such	cases,	the	

integral	involves	dy	and	not	dx.	It	is	therefore	necessary	to	write	x	in	terms	of	y 

wherever	it	appears.	The	integration	is	then	said	to	be	carried	out	with respect to	y	

instead	of	x.

EXAMPLE 6.14  Find	the	area	between	the	curve	y	=	x	−	1	and	the	y	axis	between	y	=	0	and	y	=	4.

SOLUTION

Instead	of	strips	of	width	δx	and	height	y,	you	now	sum	strips	of	width	δy	and	

length	x	(see	figure	6.21).	

You	write

A x y
y

s

=
→

∑
δ 0
lim δ

over all
rectangle

	 =	∫ 4

0
x dy

	 =	∫ 4

0
(y	+	1)dy 

	 =	
y

y
2

0

4

2
+





	

	 =	12	square	units.

y = x – 1

x

y

A

O

4

–1

y = x – 1

x

y

δy

x

O

4

–1

Figure 6.21

To integrate x with 
respect to y, write x 

in terms of y. For this 
graph y = x – 1

so x = y + 1.
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EXAMPLE 6.15  Find	the	area	between	the	curve	y	=	 x 	and	the	y	axis	between	y	=	0	and	y	=	3.

SOLUTION

A	=	∫ 3

0
x dy

	 =	∫ 3

0
	y2 dy  

	 = 
y3

0

3

3






	

	 =	9	square	units.

EXERCISE 6E    Find	the	area	of	the	region	bounded	by	each	of	these	curves,	the	y	axis	and	the	
lines	y	=	a	and	y	=	b.

1  y	=	3x	+	1,	a	=	1,	b	=	7.	 2	 y	=  x – ,2 				 a	=	0,	b	=	2.

				

3  	y	= x3 ,	a	=	0,	b	=	2.	 4	 y	=	 x 	−	1,	a	=	0,	b	=	2.

5  y	=	 x4 ,	a	=	1,	b	=	2.	 6	 y	=	 x3 	−	2,	a	=	−1,	b	=	1.	 	

The reverse chain rule

ACTIVITY 6.3  (i)	 Use	the	chain	rule	to	differentiate	these.

(a)  (x	−	2)4	 (b)	 (2x	+	5)7	

(c) 

1
2 1 3( )x − 	 (d)	 ( )1 8− x 	

Since y = x, x = y2

y

x

3

O

y =    x

Figure 6.22

y

x

7

1

O

y = 3x + 1
y

x

2

O

y =    x – 2

You can think of the chain rule 
as being: ‘the derivative of the 
bracket × the derivative of the 

inside of the bracket’.
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(ii)  Use	your	answers	to	part	(i)	to	find	these.

(a)  4 2 3( )x x−∫ d 	 (b)	 ( )x x−∫ 2 3 d 	

(c)  7 2 5 6( )x x+∫ d 	 (d)	 28 2 5 6( )x x+∫ d

(e)  6 2 1 4( )x x− −∫ d 	 (f)	 1
2 1 4( )x

x
−∫ d 	

(g)  −
−∫ 4

1 8x
xd 	 (h)	 8

1 8−∫
x

xd

In	the	activity,	you	saw	that	you	can	use	the	chain	rule	in	reverse	to	integrate	

functions	in	the	form	(ax	+	b)n.

For	example,	

This	tells	you	that					 15 3 2 3 24 5( ) ( )x x x c+ = + +∫ d

	 	 								⇒  ( ) ( )3 2 3 24 51
15

x x x c+ = + +∫ d .

EXAMPLE 6.16  Find	 3

5 2−∫
x

xd .

SOLUTION 

3

5 2
3 5 2

1
2

−
= −∫ ∫ −

x
x x xd d( )

Use	the	reverse	chain	rule	to	find	the	function	which	differentiates	to	give

3 5 2
1
2( )− −x .	

This	function	must	be	related	to	( )5 2
1
2− x .

Increasing the power 
of the bracket by 1.

The	derivative	of	( )5 2
1
2− x 	is	1

2
2 5 2 5 2

1
2

1
2× − − = − −− −( ) ( )x x

So	the	derivative	of	− −3 5 2
1
2( )x 	is	3 5 2

1
2( )− −x

⇒		

	

In	general,	d
d

( ) ( )( )ax b
x

a n ax b
n

n+ = + +
+1

1

Since	integration	is	the	reverse	of	differentiation,	you	can	write:

⇒	

d
d

( ) ( )

( )

3 2 5 3 3 2

15 3 2

5
4

4

x
x

x

x

+ = × × +

= +

3 5 2 3 5 2

3 5 2

1
2

1
2( ) ( )

.

− = − − +

= − − +

−∫ x x x c

x c

d

a n ax b x ax b c

ax b x
a n

n n

n

( )( ) ( )

( )
( )

(

+ + = + +

+ = +

∫
∫

+1

1
1

1d

d aax b cn+ ++) .1
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EXERCISE 6F  1   Evaluate	the	following	indefinite	integrals.

(i)  ( )x x+∫ 5 4 d 	 (ii)	 ( )x x+∫ 7 8 d

(iii)  1
2 6( )x

x
−∫ d 	 (iv)	 x x−∫ 4 d

(v)  ( )3 1 3x x−∫ d 	 (vi)	 ( )5 2 6x x−∫ d

(vii)  3 2 4 5( )x x−∫ d 	 (viii)	 4 2x x−∫ d

(ix)  4
8 2( )−∫ x

xd 	 (x)	 3

2 1x
x

−∫ d

2  Evaluate	the	following	definite	integrals.

(i) 
1

5

1∫ −x xd 	 (ii)	
1

3 3
1∫ +( )x xd 	

(iii) 
−∫ −( )

1

4 4
3x xd

		 (iv)	
0

3 5
4 2∫ −( )x xd

(v) 
5

9
5∫ −x xd 	 (vi)	 	

2

10
1∫ −x xd 	

3  The	graph	of	y	=	(x	–	2)3	is	shown	here.

(i)  Evaluate	
2

4 3
2∫ −( )x xd .

(ii)  Without	doing	any	calculations,	state	

what	you	think	the	value	of																

 
0

2 3
2∫ −( )x xd 	would	be.	Give	reasons.

(iii) Confirm	your	answer	by	carrying	out	

the	integration.

4  The	graph	of	y	=	(x	–	1)4	–	1	is	shown	here.

(i)  Find	the	area	of	the	shaded	region	A	by	evaluating	
−∫ − −( )1

0 41 1( )x xd .

(ii)  Find	the	area	of	the	shaded	region	B	by	evaluating	an	appropriate	integral.

(iii) Write	down	the	area	of	the	total	shaded	region.

(iv)  Why	could	you	not	just	evaluate	
−∫ − −( )1

2 41 1( )x xd 	to	find	the	total	area?

y

xO 42

y = (x – 2)3

y

xO 2B

A

y = (x – 1)4 – 1
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5   	Find	the	area	of	the	shaded	region	for	each	of	the	following	graphs.

(i)  	 	 (ii) 

6  The	equation	of	a	curve	is	such	that	
d
d

y
x x
=

−
6

3 2
.	Given	that	the	curve	passes	

	 through	the	point	P(2,	9),	find

(i)   the	equation	of	the	normal	to	the	curve	at	P

(ii)   the	equation	of	the	curve.

7  A	curve	is	such	that		
d
d

y
x x
=

−
4

6 2
,	and	P(1,	8)	is	a	point	on	the	curve.

(i)  The	normal	to	the	curve	at	the	point	P	meets	the	co-ordinate	axes	at	Q	

and	at	R.	Find	the	co-ordinates	of	the	mid-point	of	QR.

(ii)  Find	the	equation	of	the	curve.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q9 June 2006]

Improper integrals 

ACTIVITY 6.4  Here	is	the	graph	of	y
x

= 1
2
.	The	shaded	region	is	given	by	 1

21 x
x

∞
∫ d .

(i)  Work	out	the	value	of	
1 2

1b

x
x∫ d 	when	

  (a) b	=	2	 	 	 (b)	b	=	3		 	 	 (c) b =	10	 	 	 (d)	b	=	100	 	 	 (e)	b	=	10	000.

(ii)  What	do	you	think	the	value	of	 1
21 x

x
∞
∫ d 	is?

y

xO 42

y = (x – 4)2

y

xO 53

y = (x – 3)3 y

xO 42

y = (x – 4)2

y

xO 53

y = (x – 3)3

y

xO 1

Figure 6.23
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At	first	sight,	 1 1
21 1x

x
x

∞ ∞

∫ = −





d 	doesn’t	look	like	a	particularly	daunting	integral.

However,	the	upper	limit	is	infinity,	which	is	not	a	number;	so	when	you	get	an

answer	of	1 1− ∞,	you	cannot	work	it	out.	Instead,	you	should	start	by	looking	at

the	case	where	you	are	finding	the	finite	area	between	1	and	b	(as	you	did	in	the

activity).	You	can	then	say	what	happens	to	the	value	of	1
1−
b

	as	b	approaches	(or

tends	to)	infinity.	This	process	of	taking	ever	larger	values	of	b,	is	called	taking	a	

limit.	In	this	case	you	are	finding	the	value	of	1 1−
b

	in	the	limit	as	b	tends	to	∞.

You	can	write	this	formally	as:	

	 	 		 	 	

As	b	→ ∞	then	 1
21 x

x
b∫ d 	becomes	 lim

b

b

x
x

→∞ ∫
1

21
d 	=	 lim

b b→∞
− +( )1 1 	=	1.

●?	 What	is	the	value	of	 1
2x

x
a

∞
∫ d ?	

	 What	can	you	say	about	 1
20 x

x
∞
∫ d ?

Integrals	where	one	of	the	limits	is	infinity	are	called	improper integrals.	

There	is	a	second	type	of	improper	integral,	which	is	when	the	expression	you	

want	to	integrate	is	not	defined	over	the	whole	region	between	the	two	limits.	In	

the	example	that	follows	the	expression	is	
1

x
	and	it	is	not	defined	when	x	=	0.

EXAMPLE 6.17  Evaluate	 1
0

9

x
x∫ d .

SOLUTION 

The	diagram	shows	the	graph	of y
x

= 1
.

1 1

1 1
1

1 1

21 1x
x

x

b

b

b b

∫ = −





= −( ) − −( )
= −( ) +

d

y

xO a 9

y = 1
x

Figure 6.24
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You	can	see	that	the	expression	is	undefined	at	x	=	0,	so	you	need	to	find	the	

integral	from	a	to	9	and	then	take	the	limit	as	a	→	0	from	above.

You	can	write:	 1 2

2 9 2

6 2

9 91
2

1
2

1
2

1
2

x
x x

a

a

a a∫ = 





= ×( ) − ( )
= −

d

	 		

	

So	as	a	tends	to	zero,	the	integral	tends	to	6,	and	 1
0

9

x
x∫ d 	=	6.

Notice,	although	the	left-hand	side	of	the	curve	is	infinitely	high,	it	has	a	finite	

area.

EXERCISE 6G   Evaluate	the	following	improper	integrals.

1 
1

0

1

x
x∫ d 		 2 	

1
3

1 x
x

∞

∫ d 	

3 
2
2

1 x
x

∞

∫ d 		 4	
2
3

2

x
x

−∞

−

∫ d 	

5  −
∞

∫ 1
2

1 x
xd 		 6	

6

0

4

x
x∫ d 	

Finding volumes by integration

When	the	shaded	region	in	figure	6.25	is	rotated	through	360°	about	the	x	axis,	

the	solid	obtained,	illustrated	in	figure	6.26,	is	called	a	solid of revolution.	

In	this	particular	case,	the	volume	of	the	solid	could	be	calculated	as	the	difference	

between	the	volumes	of	two	cones	(using	V	= 13πr2h),	but	if	the	line	y	=	x	in	figure	

6.25	was	replaced	by	a	curve,	such	a	simple	calculation	would	no	longer	be	possible.

x

y
y = x

O 1 2

Figure 6.25

x

y

O

Figure 6.26
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●?	 1  Describe	the	solid	of	revolution	obtained	by	a	rotation	through	360°	of

(i)	 a	rectangle	about	one	side

(ii)	 a	semi-circle	about	its	diameter

(iii)	 a	circle	about	a	line	outside	the	circle.

● 2   Calculate	the	volume	of	the	solid	obtained	in	figure	6.26,	leaving	your	answer	

as	a	multiple	of	π.

Solids formed by rotation about the x axis 

Now	look	at	the	solid	formed	by	rotating	the	shaded	region	in	figure	6.27	

through	360°	about	the	x	axis.

The	volume	of	the	solid	of	revolution	(which	is	usually	called	the	volume of 

revolution)	can	be	found	by	imagining	that	the	solid	can	be	sliced	into	thin	discs.

The	disc	shown	in	figure	6.28	is	approximately	cylindrical	with	radius	y	and	

thickness	δx,	so	its	volume	is	given	by	

δV	=	πy2δx.

The	volume	of	the	solid	is	the	limit	of	the	sum	of	all	these	elementary	discs	as				

δx →	0,

i.e.	the	limit	as	δx	→	0	of	
over all

discs

∑ 	δV

	 =	
x a

x b

=

=

∑πy2	δx.

The	limiting	values	of	sums	such	as	these	are		

integrals	so

V	=	∫ b

a
πy2		dx

The	limits	are a	and	b because	x	takes	values	from	a	to	b.	 	 	

aO x

y y = f(x)

b

Figure 6.27

O x

y

Figure 6.28

You can write this as 

V = ∫ x=b 

x=a
 πy2 dx

emphasising that the limits               
a and b are values of x, not y.
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! 	 Since	the	integration	is	‘with	respect	to	x’,	indicated	by	the	dx	and	the	fact	that	

the	limits	a	and b	are	values	of	x,	it	cannot	be	evaluated	unless	the	function	y	is	

also	written	in	terms	of	x.

EXAMPLE 6.18  The	region	between	the	curve	y	=	x2,	the	x	axis	and	the	lines	x	=	1	and	x	=	3	is	

rotated	through	360°	about	the x	axis.	

Find	the	volume	of	revolution	which	is	formed.

SOLUTION

The	region	is	shaded	in	figure	6.29.	

Using	V	=	∫ a

b
πy2		dx

volume	 =	∫ 1

3
π(x2)2		dx  

	 =	∫ 1

3
πx4		dx

	 =	
πx5

1

3

5






	

	 =	π
5

243 1( – )	

	 =	242
5

π.

The	volume	is	242
5

π 	cubic	units	or	152	cubic	units	(3	s.f.).

! 	 Unless	a	decimal	answer	is	required,	it	is	usual	to	leave	π	in	the	answer,	which	is	

then	exact.

O 1 3

y

x

y = x2

Figure 6.29

Since in this case 
y = x2

y2 = (x2)2 = x4.
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Solids formed by rotation about the y axis

When	a	region	is	rotated	about	the	y	axis	a	very	different	solid	is	obtained.

Notice	the	difference	between	the	solid	obtained	in	figure	6.31	and	that	in		

figure	6.28.

For	rotation	about	the	x	axis	you	obtained	the	formula	

Vx axis	=	∫ b

a
πy2		dx.

In	a	similar	way,	the	formula	for	rotation	about	the	y	axis

Vy axis	=	∫
q

p
πx2		dy	 can	be	obtained.

In	this	case	you	will	need	to	substitute	for	x2	in	terms	of	y.

	●		 How	would	you	prove	this	result?

EXAMPLE 6.19  The	region	between	the	curve	y	=	x2,	the	y	axis	and	the	lines	y	=	2	and	y	=	5	is	

rotated	through	360°	about	the	y	axis.	

Find	the	volume	of	revolution	which	is	formed.

SOLUTION

The	region	is	shaded	in	figure	6.32.

Using	V =	∫
q

p
πx2		dy

volume	 =	∫ 5

2
πy  dy since	x2	=	y

	 	 = 





πy2

2

5

2
	

	 	 = π
2

	(25	−	4)

	 	 = 21
2
π 	cubic	units.

O x

y y = f(x)

p

q

Figure 6.30

O x

y

Figure 6.31

O

y

x

y = x2

2

5

Figure 6.32
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EXERCISE 6H   1  Name	six	common	objects	which	are	solids	of	revolution.

2  In	each	part	of	this	question	a	region	is	defined	in	terms	of	the	lines	which	

form	its	boundaries.	Draw	a	sketch	of	the	region	and	find	the	volume	of	the	

solid	obtained	by	rotating	it	through	360°	about	the	x	axis.

(i)  y	=	2x,	the	x	axis	and	the	lines	x	=	1	and	x	=	3

(ii)  y	=	x	+	2,	the	x	axis,	the	y	axis	and	the	line	x	=	2

(iii) y	=	x2	+	1,	the	x	axis	and	the	lines	x	=	−1	and	x	=	1

(iv)  y	=	 x ,	the	x	axis	and	the	line	x	=	4

3  (i)  Sketch	the	line	4y	=	3x	for	x 	0.	

(ii)  Identify	the	area	between	this	line	and	the	x	axis	which,	when	rotated	

through	360°	about	the	x	axis,	would	give	a	cone	of	base	radius	3	and	

height	4.

(iii) Calculate	the	volume	of	the	cone	using

(a)  integration

(b)  a	formula.

4  In	each	part	of	this	question	a	region	is	defined	in	terms	of	the	lines	which	

form	its	boundaries.	Draw	a	sketch	of	the	region	and	find	the	volume	of	the	

solid	obtained	by	rotating	through	360°	about	the	y	axis.

(i)  y	=	3x,	the	y	axis	and	the	lines	y	=	3	and	y	=	6

(ii)  y	=	x	−	3,	the	y	axis,	the	x	axis	and	the	line	y	=	6

(iii) y	=	x2	−	2,	the	y	axis	and	the	line	y	=	4

5  A	mathematical	model	for	a	large	garden	pot	is	obtained	by	rotating	through	

360°	about	the	y	axis	the	part	of	the	curve	y	=	0.1x2	which	is	between	x	=	10	

and	x	=	25	and	then	adding	a	flat	base.	Units	are	in	centimetres.

(i)  Draw	a	sketch	of	the	curve	and	shade	in	the	cross-section	of	the	pot,	

indicating	which	line	will	form	its	base.

(ii)  Garden	compost	is	sold	in	litres.	How	many	litres	will	be	required	to	fill	

the	pot	to	a	depth	of	45	cm?	(Ignore	the	thickness	of	the	pot.)
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6     The	graph	shows	the	curve	y	=	x2	−	4.	The	region	R	is	formed	by	the	line	

y	=	12,	the	x	axis,	the	y	axis	and	the	curve	y	=	x2	−	4	for	positive	values	of	x.

(i)  Copy	the	sketch	graph	and	shade	the	region	R.

The	inside	of	a	vase	is	formed	by	rotating	the	region	R	through	360°	about	the	
y	axis.	Each	unit	of	x	and	y	represents	2	cm.

(ii)  Write	down	an	expression	for	the	volume	of	revolution	of	the	region	R	

about	the	y	axis.

(iii) Find	the	capacity	of	the	vase	in	litres.

(iv)  Show	that	when	the	vase	is	filled	to	
5
6	of	its	internal	height	it	is	

three-quarters	full.
  [MEI]

7  The	diagram	shows	the	curve	y x= 3
1
4.	The	shaded	region	is	bounded	by	the	

curve,	the	x	axis	and	the	lines	x	=	1	and	x	=	4.

	

Find	the	volume	of	the	solid	obtained	when	this	shaded	region	is	rotated	

completely	about	the	x	axis,	giving	your	answer	in	terms	of	π.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q2 June 2007]

O 4–4
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8  The	diagram	shows	part	of	the	curve	y a
x

= ,	where	a	is	a	positive	constant.

	 Given	that	the	volume	obtained	when	the	shaded	region	is	rotated	through	

360°	about	the	x	axis	is	24π,	find	the	value	of	a.

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q2 June 2010]

y

xO 1 3

y = a
x

KEY POINTS

1 
d
d

y
x

x y x
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= = + +
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1 									⇒         n	≠	–1

2  	 x x x
n
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n

n
n

a

b

a

b n n
d = +







= +
+ + +

∫
1 1 1

1 1
– 		 n	≠	–1

3  Area	A	 =

=

∫

∫

y x

x x
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b

a

b
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4  Area	B	= ∫ ( ( ) – ( ))f g dx x x

a

b
		

5  Area	C	= ∫ x y
p

q
d 		

6	 Volumes of revolution

About	the	x	axis	V	=	∫ b

a
	πy2	dx		

About	the	y	axis	V	=	∫ q

p
	πx2	dy 

y

xb

B

a

y = f (x)

y = g (x)

C

q

p

y

O x

y = f (x)

a b x

y

q

x

y

p
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Trigonometry

I must go down to the seas again, to the lonely sea and the sky,  

And all I ask is a tall ship and a star to steer her by.

John Masefield

Trigonometry background

Angles of elevation and depression

The angle of elevation is the angle between the horizontal and a direction above 

the horizontal (see figure 7.1). The angle of depression is the angle between the 

horizontal and a direction below the horizontal (see figure 7.2).

Bearing

The bearing (or compass bearing) is the direction measured as an angle from 

north, clockwise (see figure 7.3).

angle of elevation

Figure 7.1

angle of depression

Figure 7.2

150°
E

this direction is
a bearing of 150°

W

N

S

Figure 7.3

7
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Trigonometrical functions

The simplest definitions of the trigonometrical functions are given in terms of 

the ratios of the sides of a right-angled triangle, for values of the angle θ between 

0° and 90°.

In figure 7.4

sin cos tθ θ= =opposite
hypotenuse

adjacent
hypotenuse

aan .θ = opposite
adjacent

Sin is an abbreviation of sine, cos of cosine and tan of tangent. You will see from 

the triangle in figure 7.4 that

sin θ = cos (90° − θ) and cos θ = sin (90° − θ).

Special cases

Certain angles occur frequently in mathematics and you will find it helpful to 

know the value of their trigonometrical functions.

(i)  The angles 30° and 60°

In figure 7.5, triangle ABC is an equilateral triangle with side 2 units, and AD is a 

line of symmetry.

Using Pythagoras’ theorem

AD2 + 12 = 22 ⇒ AD = 3.

opposite

adjacent

hypotenuse
90° – θ

θ

Figure 7.4 

30°

60°

D
CB

A

2

1

Figure 7.5 



Tr
ig

o
n

o
m

e
tr

y

218

P1 

7

From triangle ABD, 

sin ; cos ; tan ;60 3
2

60 1
2

60 3° = ° = ° =
        

sin ; cos ; tan ;60 3
2

60 1
2

60 3° = ° = ° =
           

sin ; cos ; tan ;60 3
2

60 1
2

60 3° = ° = ° =

sin ; cos ; tan .30
1
2

30
3

2
30

1

3
° = ° = ° =

 
          sin ; cos ; tan .30

1
2

30
3

2
30

1

3
° = ° = ° =        sin ; cos ; tan .30

1
2

30
3

2
30

1

3
° = ° = ° =

ExAmPlE 7.1  Without using a calculator, find the value of cos 60°sin 30° + cos230°. 

(Note that cos230° means (cos 30°)2.)

SOlUTION

cos 60°sin 30° + cos230° 

(ii)  The angle 45° 

In figure 7.6, triangle PQR is a right-angled isosceles triangle with equal sides of 

length 1 unit.

Using Pythagoras’ theorem, PQ = 2.

This gives

sin ; cos ; tan .45 1

2
45 1

2
45 1° = ° = ° =

(iii)  The angles 0° and 90°

Although you cannot have an angle of 0° in a triangle (because one side would be 

lying on top of another), you can still imagine what it might look like. In figure 

7.7, the hypotenuse has length 1 unit and the angle at X is very small.

= × + 





= +

=

1
2

1
2

3
2

1
4

3
4

1

2

.

45°
RP

Q

1

1

Figure 7.6

opposite
YX

Z

adjacent

hypotenuse

Figure 7.7 
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If you imagine the angle at X becoming smaller and smaller until it is zero, you 

can deduce that

sin ; cos ; tan .0 0 0 1 0 00
1

1
1

0
1° = = ° = = ° = =

If the angle at X is 0°, then the angle at Z is 90°, and so you can also deduce that 

sin ; cos .90 1 90 01
1

0
1° = = ° = =

However when you come to find tan 90°, there is a problem. The triangle 

suggests this has value 
1
0, but you cannot divide by zero.

If you look at the triangle XYZ, you will see that what we actually did was to draw 

it with angle X not zero but just very small, and to argue:

‘We can see from this what will happen if the angle becomes smaller and smaller 

so that it is effectively zero.’

●? Compare this argument with the ideas about limits which you met in Chapters 5 

and 6 on differentiation and integration.

In this case we are looking at the limits of the values of sin θ, cos θ and tan θ as 

the angle θ approaches zero. The same approach can be used to look again at the 

problem of tan 90°.

If the angle X is not quite zero, then the side ZY is also not quite zero, and tan Z 

is 1 (XY is almost 1) divided by a very small number and so is large. The smaller 

the angle X, the smaller the side ZY and so the larger the value of tan Z. We 

conclude that in the limit when angle X becomes zero and angle Z becomes 90°, 

tan Z is infinitely large, and so we say 

as Z → 90°, tan Z → ∞ (infinity).

You can see this happening in the table of values below.

Z tan Z

80° 5.67

89° 57.29

89.9° 572.96

89.99° 5729.6

89.999° 57 296

When Z actually equals 90°, we say that tan Z is undefined.

Read these arrows as ‘tends to’.
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Positive and negative angles

Unless given in the form of bearings, angles are measured from the x axis (see 

figure 7.8). Anticlockwise is taken to be positive and clockwise to be negative.

ExAmPlE 7.2  In the diagram, angles ADB and CBD are right angles, angle BAD = 60°, AB = 2l 

and BC = 3l.

Find the angle θ.

60°
D

C

A

B

2l

3l
θ

Figure 7.9

SOlUTION 

First, find an expression for BD.

In triangle ABD, BD
AB

 = sin 60°

⇒ BD = 2l sin 60°

  

= ×

=

2 3
2

3

l

l

an angle of +135°

x
an angle of –30°
x

Figure 7.8 

AB = 2l
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In triangle BCD, tan θ =

=

=

BD
BC

3
3

1

3

l
l

⇒	 θ = tan–1
 1

3







	 	=	30°

ExERCISE 7A   1  In the triangle PQR, PQ = 17 cm, QR = 15 cm and PR = 8 cm.

(i)  Show that the triangle is right-angled.

(ii)  Write down the values of sin Q, cos Q and tan Q, leaving your answers 

as fractions.

(iii) Use your answers to part (ii) to show that

(a)  sin2 Q + cos2 Q = 1

(b)  tan Q = sin
cos

Q
Q

2  Without using a calculator, show that:

(i)  sin 60°cos 30° + cos 60°sin 30° = 1

(ii)  sin2 30° + sin2 45° = sin2 60°

(iii) 3sin2 30° = cos2 30°.

3  In the diagram, AB = 10 cm, angle BAC = 30°, angle BCD = 45° and 

angle BDC = 90°. 

(i)  Find the length of BD.

(ii)  Show that AC = 5 3 1−( ) cm.

4  In the diagram, OA = 1 cm, angle AOB = angle BOC = angle COD = 30° and 

angle OAB = angle OBC = angle OCD = 90°.

(i)  Find the length of OD giving your 

  answer in the form a 3.

(ii)  Show that the perimeter of OABCD 

  is 5
3

1 3+( ) cm.

30°

10 cm

45°
C

D

B

A

30° A

B

C

D

O

30°

30
°
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5    In the diagram, ABED is a trapezium with right angles at E and D, and CED is 

a straight line. The lengths of AB and BC are 2d and 2 3( )d  respectively, and 

angles BAD and CBE are 30° and 60° respectively.

(i)  Find the length of CD in terms of d.

(ii)  Show that angle CAD =  tan–1
 

2

3







  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q3 November 2005]

6  In the diagram, ABC is a triangle in which AB = 4 cm, BC = 6 cm and angle 

ABC = 150°. The line CX is perpendicular to the line ABX.

(i)  Find the exact length of BX and show that angle CAB = tan–1
 

3

4 3 3+






(ii)  Show that the exact length of AC is √(52 + 24√3) cm.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 June 2006] 

Trigonometrical functions for angles of any size

Is it possible to extend the use of the trigonometrical functions to angles greater 

than 90°, like sin 120°, cos 275° or tan 692°? The answer is yes − provided you 

change the definition of sine, cosine and tangent to one that does not require the 

angle to be in a right-angled triangle. It is not difficult to extend the definitions, 

as follows.

30° D

EB

C

A

2d

(2   3)d

60°

B4 cm

6 cm

C

A X
150°
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First look at the right-angled triangle in figure 7.10 which has hypotenuse of  

unit length.

This gives rise to the definitions:

sin ; cos ; tan .θ θ θ= = = = =y
y

x
x

y
x1 1

Now think of the angle θ being situated at the origin, as in figure 7.11, and allow 

θ to take any value. The vertex marked P has co-ordinates (x, y) and can now be 

anywhere on the unit circle.

You can now see that the definitions above can be applied to any angle θ, whether 

it is positive or negative, and whether it is less than or greater than 90°

sin , cos , tan .θ θ θ= = =y x
y
x

For some angles, x or y (or both) will take a negative value, so the sign of sin θ, 

cos θ and tan θ will vary accordingly.

ACTIvITy 7.1  Draw x and y axes. For each of the four quadrants formed, work out the sign of 

sin θ, cos θ and tan θ, from the definitions above.

Identities involving sin θ, cos θ and tan θ

Since tan θ = 
y
x  and y = sin θ and x = cos θ it follows that

tan θ = sin
cos

θ
θ .

It would be more accurate here to use the identity sign, ≡, since the relationship 

is true for all values of θ

tan θ ≡ 
sin
cos

θ
θ .

An identity is different from an equation since an equation is only true for certain 

values of the variable, called the solution of the equation. For example, tan θ = 1 is 

x
O

P

1 y

θ

Figure 7.10  xxO

P(x, y)

1

y

y

θ

Figure 7.11 



Tr
ig

o
n

o
m

e
tr

y

224

P1 

7

an equation: it is true when θ = 45° or 225°, but not when it takes any other value 

in the range 0°  θ  360°.

By contrast, an identity is true for all values of the variable, for example

tan
sin
cos

, tan
sin
cos

, tan(–30
30
30

72
72
72

33° = °
° ° = °

° 99 399
399

° = °
°) sin(– )

cos(– )
,

and so on for all values of the angle.

In this book, as in mathematics generally, we often use an equals sign where 

it would be more correct to use an identity sign. The identity sign is kept for 

situations where we really want to emphasise that the relationship is an identity 

and not an equation.  

Another useful identity can be found by applying Pythagoras’ theorem to any 

point P(x, y) on the unit circle

 y2 + x2 ≡		OP2

 (sin θ)2 + (cos θ)2 ≡	1.

This is written as

 sin2 θ + cos2 θ ≡ 1.

You can use the identities tan sin
cos

θ θ
θ

≡  and sin2 θ + cos2 θ ≡ 1 to prove other 

identities are true. 

There are two methods you can use to prove an identity; you can use either 

method or a mixture of both.

Method 1

When both sides of the identity look equally complicated you can work with  

both the left-hand side (LHS) and the right-hand side (RHS) and show that  

LHS – RHS = 0.

ExAmPlE 7.3  Prove the identity cos2 θ – sin2 θ ≡ 2 cos2 θ – 1.

SOlUTION 

Both sides look equally complicated, so show LHS – RHS = 0. 

So you need to show cos2 θ – sin2 θ – 2 cos2 θ + 1 ≡ 0.  

Simplifying: 

 cos2 θ – sin2 θ – 2 cos2 θ + 1 ≡ – cos2 θ – sin2 θ + 1

	 ≡ –(cos2 θ + sin2 θ) + 1

	 ≡ –1 + 1 Using sin2 θ + cos2 θ = 1.

	 ≡ 0 as required
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Method 2  

When one side of the identity looks more complicated than the other side, you 

can work with this side until you end up with the same as the simpler side.

ExAmPlE 7.4  Prove the identity cos
sin cos

tanθ
θ θ

θ
1

1
− − ≡ .

SOlUTION   

The LHS of this identity is more complicated, so manipulate the LHS until you 

end up with tan θ.

Write the LHS as a single fraction: 

cos
sin cos

cos ( sin )
cos ( sin )

θ
θ θ

θ θ
θ θ1

1 1
1

2

− − ≡ − −
−

 

 

 
≡ + −

−
cos sin
cos ( sin )

2 1
1

θ θ
θ θ

   
 

≡ − + −
−

1 1
1

2sin sin
cos ( sin )

θ θ
θ θ

 

 

≡ −
− ≡ −

−
sin sin

cos ( sin )
sin ( sin )
cos ( sin

θ θ
θ θ

θ θ
θ θ

2

1
1
1 ))

sin
cos

tan

≡

≡

θ
θ
θ as required

ExERCISE 7B    Prove each of the following identities. 

1  1 – cos2 θ ≡ sin2 θ 

2  (1 – sin2 θ)tan θ ≡ cos θ sin θ 

3   1 1
2

2

2sin
cos
sinθ

θ
θ

− ≡

4  tan
cos

2
2

1 1θ
θ

≡ −

5 
sin cos

sin cos

2 2

2 2
3 1 2θ θ

θ θ
− +
−

≡

6 
1 1 1

2 2 2 2cos sin cos sinθ θ θ θ
+ ≡

7   tan cos
sin sin cos

θ θ
θ θ θ

+ ≡ 1

8   1
1

1
1

2
2+ + − ≡

sin sin cosθ θ θ

9   Prove the identity 1
1

2

2
−
+

tan
tan

x
x

 ≡ 1 – 2 sin2 x.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q3 June 2007]

Since sin2  θ + cos2  θ ≡ 1,
cos2  θ ≡ 1 – sin2  θ
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10    Prove the identity 1
1

2+ + + ≡sin
cos

cos
sin cos

x
x

x
x x

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q2  November 2008]

11   Prove the identity sin
sin

sin
sin

tan .x
x

x
x

x
1 1

2 2

− − + ≡

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q1 June 2009]

The sine and cosine graphs

In figure 7.12, angles have been drawn at intervals of 30° in the unit circle, and 

the resulting y co-ordinates plotted relative to the axes on the right. They have 

been joined with a continuous curve to give the graph of sin θ for 0°  θ  360°.

The angle 390° gives the same point P1 on the circle as the angle 30°, the angle 

420° gives point P2 and so on. You can see that for angles from 360° to 720° the 

sine wave will simply repeat itself, as shown in figure 7.13. This is true also for 

angles from 720° to 1080° and so on. 

Since the curve repeats itself every 360° the sine function is described as periodic, 

with period 360°.

In a similar way you can transfer the x co-ordinates on to a set of axes to obtain 

the graph of cos θ. This is most easily illustrated if you first rotate the circle 

through 90° anticlockwise. 

O

P3 P3

P9

90° 270°

y

x 180° 360°

+1

–1

P2P4

P10P8

P1
P1

P5

P11P7

P0

P0P12

P9

P10

P8
P11

P12P6

P4

P5

P7

P6

P2

sin θ

θ

Figure 7.12 

O

sin θ

θ180° 360° 540° 720°

+1

–1

Figure 7.13 
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Figure 7.14 shows the circle in this new orientation, together with the resulting 

graph.

For angles in the interval 360°  θ  720°, the cosine curve will repeat itself. You 

can see that the cosine function is also periodic with a period of 360°.

Notice that the graphs of sin θ and cos θ have exactly the same shape. The cosine 

graph can be obtained by translating the sine graph 90° to the left, as shown in 

figure 7.15.

From the graphs it can be seen that, for example

cos 20° = sin 110°, cos 90° = sin 180°, cos 120° = sin 210°, etc.

In general

cos θ ≡ sin (θ	+ 90°). 

●? 1 What do the graphs of sin θ and cos θ look like for negative angles?

 2 Draw the curve of sin θ for 0°  θ  90°. 

 Using only reflections, rotations and translations of this curve, how can you 

generate the curves of sin θ and cos θ for 0°  θ  360°?

O
P 3 P3P 9

cos θ

y θ

x

180° 360°

+1

–1

P 2
P 4

P 10
P 8

P 1

P1

P 5

P 11
P 7

P 0 P0P 12

P9
P10

P8

P11

P12

P 6

P4

P5

P7P6

P2

90° 270°

Figure 7.14 

–1

θO 90°20°

110° 210°

120° 270°

y = cos θ

y = sin θ

180° 360°

+1

y

Figure 7.15 
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The tangent graph

The value of tan θ can be worked out from the definition tan θ = 
y
x  

or by using 

tan θ = 
sin
cos

.
θ
θ

You have already seen that tan θ is undefined for θ = 90°. This is also the case for 

all other values of θ for which cos θ = 0, namely 270°, 450°, …, and −90°, −270°, …

The graph of tan θ is shown in figure 7.16. The dotted lines θ = ±90° and 

θ = 270° are asymptotes. They are not actually part of the curve. The branches of 

the curve get closer and closer to them without ever quite reaching them. 

Note

The graph of tan θ is periodic, like those for sin θ and cos θ, but in this case the 

period is 180°. Again, the curve for 0  θ  90° can be used to generate the rest of 

the curve using rotations and translations.

ACTIvITy 7.2  Draw the graphs of y = sin θ, y = cos θ, and y = tan θ for values of θ between −90° 

and 450°.

These graphs are very important. Keep them handy because they will be useful 

for solving trigonometrical equations.

Note

Some people use this diagram to help them remember 

when sin, cos and tan are positive, and when they are 

negative. A means all positive in this quadrant, S means sin 

positive, cos and tan negative, etc.

θ90°–90° 270°180° 360°

y

0°

Figure 7.16 

These are asymptotes.

Figure 7.17 
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Solving equations using graphs of trigonometrical functions

Suppose that you want to solve the equation cos θ = 0.5.

You press the calculator keys for cos−1 0.5 (or arccos 0.5 or invcos 0.5), and the 

answer comes up as 60°.

However, by looking at the graph of y = cos θ (your own or figure 7.18) you can 

see that there are in fact infinitely many roots to this equation.

You can see from the graph of y = cos θ that the roots for cos θ = 0.5 are:

θ = ..., −420°, −300°, −60°, 60°, 300°, 420°, 660°, 780°, ... . 

The functions cosine, sine and tangent are all many-to-one mappings, so their 

inverse mappings are one-to-many. Thus the problem ‘find cos 60°’ has only one 

solution, 0.5, whilst ‘find θ such that cos θ = 0.5’ has infinitely many solutions.

Remember, that a function has to be either one-to-one or many-to-one; so in 

order to define inverse functions for cosine, sine and tangent, a restriction has 

to be placed on the domain of each so that it becomes a one-to-one mapping. 

This means your calculator only gives one of the infinitely many solutions to 

the equation cos θ = 0.5. In fact, your calculator will always give the value of the 

solution between:

    0°   θ  180° (cos)

−90°   θ  90° (sin)

−90°   θ  90° (tan).

The solution that your calculator gives you is called principal value.

Figure 7.19 shows the graphs of cosine, sine and tangent together with their 

principal values. You can see from the graph that the principal values cover the 

whole of the range (y values) for each function.

–1

θ0 60°–60° 270°300°–300°–420° 420° 660° 780°

1

0.5

y

Figure 7.18 
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–0.5

–1

θ0 180°–180°–360° –90°–270° 360°90° 270°

1

0.5

y

y = cos θ
principal values

–0.5

–1

θ0 180°–180°–360° –90°–270° 360°90° 270°

1

0.5

y

y = sin θ
principal
values

–1

–3

θ0 180°–180°–360° –90°–270° 360°90° 270°

3

1

y

y = tan θ
principal
values2

–2

Figure 7.19 
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ExAmPlE 7.5  Find values of θ in the interval −360°  θ  360° for which sin θ = 0.5.

SOlUTION

sin θ = 0.5 ⇒ sin–1 0.5 = 30° ⇒ θ = 30°. Figure 7.20 shows the graph of sin θ.

The values of θ for which sin θ = 0.5 are −330°, −210°, 30°, 150°.

ExAmPlE 7.6  Solve the equation 3tan θ = −1 for −180°  θ  180°.

SOlUTION

 3tan θ = −1

⇒ tan θ = −1
3

⇒ θ = tan–1 (−1
3)

⇒ θ = −18.4° to 1 d.p. (calculator).

From figure 7.21, the other answer in the range is

θ = −18.4° + 180°

 = 161.6°

The values of θ are −18.4° or 161.6° to 1 d.p.

–1

θO 30° 150°–330° –210°

1

0.5

sin θ

Figure 7.20

θ

y = 3tan θ

–18.4°

y

1
3

O–90°–270° 90° 270°–180°

161.6°

180°–

Figure 7.21 
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●? How can you find further roots of the equation 3tan θ = −1, outside the range 

−180°  θ  180°?

ExAmPlE 7.7  Find values of θ in the interval 0º  θ  360º for which tan2 θ − tan θ = 2.

SOlUTION

First rearrange the equation.

 tan2 θ − tan θ = 2

⇒ tan2 θ − tan θ − 2 = 0 

⇒ (tan θ − 2)(tan θ + 1) = 0

⇒ tan θ = 2 or tan θ = −1.

tan θ = 2 ⇒    θ = 63.4º (calculator)

  or θ = 63.4º + 180º (see figure 7.22)

    = 243.4º.

tan θ = −1 ⇒	 	 θ = −45º (calculator).

This is not in the range 0°  θ  360° so figure 7.22 is used to give 

   θ = −45° + 180° = 135°

or   θ = −45° + 360° = 315°.

The values of θ are 63.4°, 135°, 243.4°, 315°.

This is a quadratic equation 
like x2 – x – 2 = 0.

θ

tan θ

90° 270°
–1

O 180°

2

360°

Figure 7.22
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ExAmPlE 7.8  Solve the equation 2sin2 θ = cos θ + 1 for 0°  θ  360°.

SOlUTION

First use the identity sin2 θ + cos2 θ = 1 to obtain an equation containing only one 

trigonometrical function.

 2sin2 θ = cos θ + 1

⇒	 2(1 − cos2 θ) = cos θ + 1

⇒	 2 − 2cos2 θ = cos θ + 1

⇒	 0 = 2cos2 θ + cos θ − 1

⇒	 0 = (2cos θ − 1)(cos θ + 1)

⇒	 2cos θ − 1 = 0 or cos θ + 1 = 0

⇒	 cos θ = 12 or cos θ = −1.

cos θ = 
1
2 ⇒	 θ = 60°

  or θ = 360° − 60° = 300° (see figure 7.23).

cos θ = −1 ⇒      θ = 180°.

The values of θ are 60°, 180° or 300°.

ExERCISE 7C   1  (i) Sketch the curve y = sin x for 0°  x  360°. 

(ii)  Solve the equation sin x  = 0.5 for 0°  x  360°, and illustrate the two roots 

on your sketch.

(iii) State the other roots for sin x = 0.5, given that x is no longer restricted to 

values between 0° and 360°. 

(iv)  Write down, without using your calculator, the value of sin 330°.

This is a quadratic 
equation in cos θ. 

Rearrange it to equal 
zero and factorise 

it to solve the 
equation.

–1

θO 60° 180°90° 270°300° 360°

1

1
2

y

y = cos θ

Figure 7.23
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2   (i)  Sketch the curve y = cos x for −90°  x  450°. 

(ii)  Solve the equation cos x = 0.6 for −90°  x  450°, and illustrate all the 

roots on your sketch.

(iii) Sketch the curve y = sin x for −90°  x  450°.

(iv)  Solve the equation sin x = 0.8 for −90°  x  450°, and illustrate all the 

roots on your sketch.

(v)  Explain why some of the roots of cos x = 0.6 are the same as those for 

sin x = 0.8, and why some are different.

3  Solve the following equations for 0°  x  360°.

(i)  tan x = 1 (ii) cos x = 0.5 (iii) sin x = − 3
2

 

(iv)  tan x = −1 (v)  cos x = −0.9 (vi) cos x = 0.2

(vii) sin x = −0.25 (viii) cos x = −1

4  Write the following as integers, fractions, or using square roots. You should 

not need your calculator.

(i)  sin 60° (ii) cos 45° (iii) tan 45° 

(iv)  sin 150° (v) cos 120° (vi) tan 180°

(vii) sin 390° (viii) cos (−30°) (ix) tan 315°

5  In this question all the angles are in the interval −180° to 180°. 

Give all answers correct to 1 decimal place.

(i)  Given that sin α  0 and cos α = 0.5, find α.

(ii)  Given that tan β = 0.4463 and cos β  0, find β.

(iii) Given that sin γ = 0.8090 and tan γ  0, find γ.

6  (i)   Draw a sketch of the graph y = sin x and use it to demonstrate why 

sin x = sin (180° − x).

(ii)  By referring to the graphs of y = cos x and y = tan x, state whether the 

following are true or false.

(a)  cos x = cos (180° − x)  (b) cos x = −cos (180° − x)

(c)  tan x = tan (180° − x) (d) tan x = −tan (180° − x)

7  (i)   For what values of α are sin α, cos α and tan α all positive?

(ii)  Are there any values of α for which sin α, cos α and tan α are all negative? 

Explain your answer.

(iii) Are there any values of α for which sin α, cos α and tan α are all equal? 

Explain your answer.

8  Solve the following equations for 0°  x  360°.

(i)  sin x = 0.1 (ii) cos x = 0.5

(iii)  tan x = −2 (iv) sin x = −0.4

(v)  sin2 x = 1 − cos x (vi) sin2 x = 1

(vii) 1 − cos2 x = 2sin x (viii) sin2 x = 2cos2 x

(ix)  2sin2 x = 3cos x (x) 3tan2 x − 10tan x + 3 = 0



P1 

7

C
irc

u
la

r m
e
a
su

re

235

9   The diagram shows part of the curves y = cos x° and y = tan x° which intersect 

at the points A and B. Find the co-ordinates of A and B. 

10  (i)   Show that the equation 3(2 sin x – cos x) = 2(sin x – 3 cos x) can be written 

in the form tan x = − 3
4

.

(ii)  Solve the equation 3(2 sin x – cos x) = 2(sin x – 3 cos x), for 0°  x  360°. 

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q1 June 2010]

11  (i)  Prove the identity (sin x + cos x)(1 − sin x cos x) ≡ sin3 x + cos3 x. 

(ii)  Solve the equation (sin x + cos x)(1 − sin x cos x) = 9 sin3 x for 0°  x  360°.

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q5 November 2009]

12  (i)  Show that the equation sin θ + cos θ = 2(sin θ − cos θ) can be expressed as 

tan θ = 3.

(ii)  Hence solve the equation sin θ + cos θ = 2(sin θ − cos θ), for 0°  θ  360°

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q3 June 2005]

13    Solve the equation 3 sin2 θ − 2 cos θ − 3 = 0, for 0°  x  180°.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q1 November 2005]

Circular measure

Have you ever wondered why angles are measured in degrees, and why there are 

360° in one revolution?

There are various legends to support the choice of 360, most of them based in 

astronomy. One of these is that since the shepherd-astronomers of Sumeria 

thought that the solar year was 360 days long, this number was then used by the 

ancient Babylonian mathematicians to divide one revolution into 360 equal parts.

Degrees are not the only way in which you can measure angles. Some calculators 

have modes which are called ‘rad’ and ‘gra’ (or ‘grad’); if yours is one of these, 

you have probably noticed that these give different answers when you are using 

the sin, cos or tan keys. These answers are only wrong when the calculator mode 

is different from the units being used in the calculation.

x
O

A

B

180°90°

y y = tan x°

y = cos x°
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The grade (mode ‘gra’) is a unit which was introduced to give a means of angle 

measurement which was compatible with the metric system. There are 100 grades 

in a right angle, so when you are in the grade mode, sin 100 = 1, just as when you 

are in the degree mode, sin 90 = 1. Grades are largely of historical interest and are 

only mentioned here to remove any mystery surrounding this calculator mode.

By contrast, radians are used extensively in mathematics because they simplify 

many calculations. The radian (mode ‘rad’) is sometimes referred to as the 

natural unit of angular measure.

If, as in figure 7.24, the arc AB of a circle centre O is drawn so that it is equal in 

length to the radius of the circle, then the angle AOB is 1 radian, about 57.3°.

You will sometimes see 1 radian written as 1c, just as 1 degree is written 1°.

Since the circumference of a circle is given by 2πr, it follows that the angle of a 

complete turn is 2π radians.

360° = 2π radians

Consequently

 180° = π radians

 90° = 
π
2 radians

 60° = 
π
3 

radians

 45° = 
π
4  

radians

 30° = 
π
6  

radians

To convert degrees into radians you multiply by 
π

180
. 

To convert radians into degrees multipy by 
180
π .

Note

1  If an angle is a simple fraction or multiple of 180° and you wish to give its value 

in radians, it is usual to leave the answer as a fraction of π.

2 When an angle is given as a multiple of π it is assumed to be in radians.

A

B

O

r

r

r

Figure 7.24

1 radian
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ExAmPlE 7.9  (i) Express in radians (a) 30° (b) 315° (c) 29°.

(ii) Express in degrees (a) π
12

 (b) 8
3
π (c) 1.2 radians.

SOlUTION

(i)  (a) 30° = 30 × π π
180 6

=

  (b) 315° = 315 × π π
180

7
4

=

  (c) 29° = 29 × π
180 

= 0.506 radians (to 3 s.f.).

(ii)  (a) π π
π12 12

180= ×
 
= 15°

  (b) 8
3

8
3

180π π
π

= ×
 
= 480°

  (c) 1.2 radians = 1.2 × 180
π

 = 68.8° (to 3 s.f.).

Using your calculator in radian mode

If you wish to find the value of, say, sin 1.4c or cos 
π
12

, use the ‘rad’ mode on your 

calculator. This will give the answers directly − in these examples 0.9854… and 

0.9659… .

You could alternatively convert the angles into degrees (by multiplying by 180
π )

but this would usually be a clumsy method. It is much better to get into the habit 

of working in radians.

ExAmPlE 7.10  Solve sin θ = 
1
2 for 0  θ  2π giving your answers as multiples of π.

SOlUTION

Since the answers are required as multiples of π it is easier to work in degrees first.

 sin θ =		12 
⇒	θ = 30° 

 θ = 30 × 
π π

180 6
= .

From figure 7.25 there is a second value

 θ = 150° = 
5
6
π

.

The values of θ are 
π π
6

5
6

and . 

θO 180° 360°

1
2

sin θ

Figure 7.25
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ExAmPlE 7.11  Solve tan2 θ = 2 for 0  θ  π.

SOlUTION

Here the range 0  θ  π indicates that 

radians are required.

Since there is no request for multiples of π, 

set your calculator to radians.

tan2 θ = 2

⇒	tan θ = 2  or  tan θ = − 2.

tan θ = 2  ⇒	 θ = 0.955 radians

tan θ = − 2  ⇒	 θ = −0.955 (not in range)

 or θ = −0.955 + π = 2.186 radians.

The values of θ are 0.955 radians and 2.186 radians.

ExERCISE 7D   1   Express the following angles in radians, leaving your answers in terms of π 

where appropriate.

(i)  45° (ii) 90° (iii) 120° (iv) 75° 

(v)  300° (vi) 23° (vii) 450° (viii) 209°

(ix)  150° (x) 7.2°

2  Express the following angles in degrees, using a suitable approximation where 

necessary.

(i)  π
10

 (ii) 3
5
π (iii)  2 radians  (iv) 4

9
π

(v)  3π (vi) 5
3
π

 (vii) 0.4 radians  (viii) 3
4
π

(ix)  7
3
π (x) 3

7
π

3  Write the following as fractions, or using square roots. 

You should not need your calculator.

(i)  sin π
4

 (ii) tan π
3

 (iii) cos π
6

 (iv) cos π 

(v)  tan 3
4
π (vi) sin 2

3
π  (vii) tan 4

3
π  (viii) cos 3

4
π  

(ix)  sin 5
6
π  (x) cos 5

3
π

4  Solve the following equation for 0  θ  2π, giving your answers as multiples 

of π.

(i)  cosθ = 3
2

 (ii) tan θ = 1 (iii) sinθ = 1

2

(iv)  sin –θ = 1
2

 (v) cos –θ = 1

2
 (vi) tanθ = 3

θ

tan θ

π
2

O

π
2

2.186

θ =

0.955

√2

π

√2–

Figure 7.26
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5   Solve the following equations for −π  θ  π.

(i)  sin θ = 0.2 (ii) cos θ = 0.74 (iii) tan θ = 3

(iv)  4 sin θ = −1 (v) cos θ = −0.4 (vi) 2tan θ = −1

6  Solve 3 cos2 θ + 2 sin θ − 3 = 0 for 0  θ  π.

The length of an arc of a circle

From the definition of a radian, an angle of 1 radian at the centre of a circle 

corresponds to an arc of length r (the radius of the circle). Similarly, an angle of 

2 radians corresponds to an arc length of 2r and, in general, an angle of θ radians 

corresponds to an arc length of θr, which is usually written r θ (figure 7.27).

The area of a sector of a circle

A sector of a circle is the shape enclosed by an arc of the circle and two radii. It is 

the shape of a piece of cake. If the sector is smaller than a semi-circle it is called a 

minor sector; if it is larger than a semi-circle it is a major sector, see figure 7.28.

The area of a sector is a fraction of the area of the whole circle. The fraction is 

found by writing the angle θ as a fraction of one revolution, i.e. 2π (figure 7.29). 

θ
r

arc length rθ

r

Figure 7.27

r

r

θ

Figure 7.29

Area = θ
2π  

× πr2

      = 1
2

r2θ.major sector

minor sector

Figure 7.28
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The following formulae often come in useful when solving problems involving 

sectors of circles.

For any triangle ABC:

The sine rule:  
a

A
b

B
c
Csin sin sin

= =

 or sin sin sinA
a

B
b

C
c

= =

The cosine rule:  a2 = b2 + c2 − 2bc cos A  

 or cos A b c a
bc

= + −2 2 2

2

The area of any triangle ABC = 12ab sin C.

ExAmPlE 7.12  Figure 7.31 shows a sector of a circle, centre O, radius 6 cm. Angle AOB = 2
3
π  

radians.

(i)   (a)  Calculate the arc length, perimeter 

and area of the sector. 

 (b)  Find the area 

of the blue  

region.

(ii)   Find the exact length of 

the chord AB.

SOlUTION 

(i) (a) Arc length = rθ

   = ×6 2
3
π

   = 4π cm

  Perimeter  = 4π + 6 + 6 = 4π + 12 cm

  Area = 1
2

2r θ  = × ×1
2

6 2
3

2 π  = 12π cm2

  (b) Area of segment = area of sector AOB – area of triangle AOB 

  The area of any triangle ABC = 12ab sin C. 

  Area of triangle AOB = × × = =1
2

6 6 2
3

18 3
2

9 3sin π cm2  

  So area of segment = −

=

12 9 3

221

π

. cm2

B

A

b

c

a

C

Figure 7.30

6 cm 6 cm

O

A B

2π
3

Figure 7.31

This is called a 
segment of the circle.
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(ii) Use the cosine rule to find the length of the chord AB

  a2 = b2 + c2 − 2bc cos A 

 Substitute in b = 6, c = 6 and A = 2
3
π

 So

             

a

a

2 2 26 6 2 6 6 2
3

72 72 108

108 6 3

1
2

= + − × ×

= − × −( ) =
= =

cos π

cm

●? How else could you find the area of triangle AOB and the length of AB?

ExERCISE 7E   1   Each row of the table gives dimensions of a sector of a circle of radius r cm. 

The angle subtended at the centre of the circle is θ radians, the arc length of 

the sector is s cm and its area is A cm2. Copy and complete the table.

r (cm) θ (rad) s (cm) A (cm2)

5 π
4

8 1

4 2

π
3

π
2

5 10

0.8 1.5

2
3
π 4π

2  (i)  (a)  Find the area of the sector OAB in the diagram.

(b) Show that the area of triangle OAB is 16 5
12

5
12

sin cosπ π .

(c) Find the shaded area. 

5π
6 O B

A

4 cm
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(ii)   The diagram shows two 

circles, each of radius 4 cm, 

with each one passing through 

the centre of the other. 

Calculate the shaded area. 

(Hint: Add the common 

chord AB to the sketch.)

3  The diagram shows the cross-section of three 

pencils, each of radius 3.5 mm, held together 

by a stretched elastic band. Find

(i)  the shaded area

(ii)  the stretched length of the band.

4  A circle, centre O, has two radii OA and OB. The line AB divides the circle  

into two regions with areas in the ratio 3:1.  

If the angle AOB is θ (radians), show that 

θ − sin θ = π
2

.

5  In a cricket match, a particular cricketer generally hits the ball anywhere in a 

sector of angle 100°. If the boundary (assumed circular) is 80 yards away, find

(i)  the length of boundary which the fielders should patrol

(ii)  the area of the ground which the fielders need to cover.

6   In the diagram, ABC is a semi-circle, centre O and radius 9 cm. The line BD is 

perpendicular to the diameter AC and angle AOB = 2.4 radians.

(i)  Show that BD = 6.08 cm, correct to 3 significant figures.

(ii)  Find the perimeter of the shaded region.

(iii) Find the area of the shaded region.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q8 June 2005]

B

A

O D

B

9 cm
A C

2.4 rad
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7      In the diagram, OAB and OCD are radii of a circle, centre O and radius 16 cm. 

Angle AOC = α radians. AC and BD are arcs of circles, centre O and radii 

10 cm and 16 cm respectively.

(i)  In the case where α = 0.8, find the area of the shaded region.

(ii)  Find the value of α for which the perimeter of the shaded region is 28.9 cm.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q2 November 2005]

8  In the diagram, OAB is a sector of a circle with centre O and radius 12 cm.  

The lines AX and BX are tangents to the circle at A and B respectively. Angle 

AOB = 1
3
π radians.

(i)  Find the exact length of AX, giving your answer in terms of  3.

(ii)  Find the area of the shaded region, giving your answer in terms of π and  3.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 June 2007]

9   In the diagram, the circle has centre O and 

radius 5 cm. The points P and Q lie on the circle,  

and the arc length PQ is 9 cm. The tangents to the 

circle at P and Q meet at the point T. Calculate

(i)  angle POQ in radians

(ii)  the length of PT

(iii)  the area of the shaded region.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 November 2008]

O

D

A

B

C

10 cm

16 cm

α rad

O

X

B

A

12 cm

1
3 π rad

O

QP

5 cm

9 cm

T
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10     In the diagram, AB is an arc of a circle, 

centre O and radius r cm, and 

angle AOB = θ radians. The point X

lies on OB and AX is perpendicular  

to OB.

(i)  Show that the area, A cm2, of the 

shaded region AXB is given by

 
A r= −( )1

2
2 θ θ θsin cos

(ii)  In the case where r = 12 and θ = 1
6
π, find the perimeter of the shaded 

region AXB, leaving your answer in terms of  3 and π.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q7 November 2007]

Other trigonometrical functions

You need to be able to sketch and work with other trigonometrical functions. 

Using transformations often helps you to do this. 

Transforming trigonometric functions

Translations

You have already seen in figure 7.15 that translating the sine graph 90° to the left 

gives the cosine graph.

In general, a translation of 
–90

0

°



  moves the graph of y = f(θ) to y = f(θ + 90°).

So cos θ = sin (θ + 90°).

Results from translations can also be used in plotting graphs such as y = sin θ + 1. 

This is the graph of y = sin θ translated by 1 unit upwards, as shown in figure 7.32.

O

A

r cm

X
B

θ rad

θ0 90°–90° 360°

y = sin θ + 1

180°–180° 270° 450° 540° 630° 720°

1

0.5

2

1.5

y

Figure 7.32
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ACTIvITy 7.3  Figure 7.33 shows the graphs of y = sin x and y = 2 + sin x for 0°  x  360°.

Describe the transformation that maps the curve y = sin x on to the curve 

y = 2 + sin x. 

Complete this statement.

‘In general, the curve y = f(x) + s is obtained from y = f(x) by ... .’

ACTIvITy 7.4  Figure 7.34 shows the graphs of y = sin x and y = sin (x − 45°) for 0°  x  360°.

Describe the transformation that maps the curve y = sin x on to the curve 

y = sin (x − 45°).

Complete this statement.

 ‘In general, the curve y = f(x − t) is obtained from y = f(x) by ... .’

–1

x
0

180° 360°90° 270°

2

1

y

y = sin x

y = 2 + sin x

3

Figure 7.33

If you have a graphics 
calculator, use it to 

experiment with other 
curves like these.

–0.5

x
0

180° 360°90° 270°

1

0.5

y

y = sin x

y = sin (x – 45°)–1

Figure 7.34

If you have a graphics 
calculator, use it to experiment 

with other curves like these.
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Reflections

ACTIvITy 7.5  Figure 7.35 shows the graphs of y = sin x and y = –sin x for 0°  x  360°.

Describe the transformation that maps the curve y = sin x on to the curve 

y = –sin x.

Complete this statement.

 ‘In general, the curve y = –f(x) is obtained from y = f(x) by ... .’

One-way stretches

ACTIvITy 7.6  Figure 7.36 shows the graphs of y = sin x and y = 2 sin x for 0°  x  180°.

What do you notice about the value of the y co-ordinate of a point on the curve 

y = sin x and the y co-ordinate of a point on the curve y = 2 sin x for any value of x?

Can you describe the transformation that maps the curve y = sin x on to the curve 

y = 2 sin x?

–0.5

x
0

180° 360°90° 270°

1

0.5

y

y = sin x

y = – sin x

1

Figure 7.35

If you have a graphics 
calculator, use it to experiment 

with other curves like these.

If you have a graphics 
calculator, use it to 

experiment with other 
curves like these.

x0

y = 2 sin x

y = sin x

180°

1

2

y

Figure 7.36 
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ACTIvITy 7.7  Figure 7.37 shows the graphs of y = sin x and y = sin 2x for 0°  x  360°.

What do you notice about the value of the x co-ordinate of a point on the curve 

y = sin x and the x co-ordinate of a point on the curve y = sin 2x for any value of y ?

Can you describe the transformation that maps the curve y = sin x on to the curve 

y = sin 2x?

ExAmPlE 7.13  Starting with the curve y = cos x, show how transformations can be used to 

sketch these curves.

(i) y = cos 3x (ii) y = 3 + cos x

(iii) y = cos (x − 60°) (iv) y = 2 cos x

SOlUTION

(i)  The curve with equation y = cos 3x is obtained from the curve with equation 

y = cos x by a stretch of scale factor 
1
3 parallel to the x axis. There will therefore 

be one complete oscillation of the curve in 120° (instead of 360°). This is shown 
in figure 7.38.

–1

x
0

90°

1

y

y = sin x

y = sin 2x

180° 360°270°

Figure 7.37

If you have a graphics 
calculator, use it to experiment 

with other curves like these.

–1

x
0

90° 270°

y = cos x

180° 360°

1

y

–1

x
0

120° 240°

y = cos 3x

360°

+1

y

Figure 7.38



Tr
ig

o
n

o
m

e
tr

y

248

P1 

7

(ii) The curve of y = 3 +  cos x is obtained from that of y = cos x by a translation 
0
3





.

 The curve therefore oscillates between y = 4 and y = 2 (see figure 7.39).

(iii)  The curve of y = cos (x − 60°) is obtained from that of y = cos x by a

 translation of 
60

0
°



  (see figure 7.40).

–1

x
0

90° 270°

y = cos x

180° 360°

1

y

1

2

3

4

x0 90° 180° 270°

y = 3 + cos x

360°

y

–1

x
0

90° 270°

y = cos x

180° 360°

1

y

1

2

3

4

x0 90° 180° 270°

y = 3 + cos x

360°

y

Figure 7.39

–1

x
0

90° 270°

y = cos x

180° 360°

1

y

–1

x
0

y = cos (x – 60°)
1

y

150° 330°

Figure 7.40
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(iv)  The curve of y = 2 cos x is obtained from that of y = cos x by a stretch of scale 

factor 2 parallel to the y axis. The curve therefore oscillates between y = 2 and 

y = −2 (instead of between y = 1 and y = −1). This is shown in figure 7.41.

!  It is always a good idea to check your results using a graphic calculator whenever 

possible.

ExAmPlE 7.14  (i)   The function f : x  a + b sin x is defined for 0  x  2π. 

 Given that f(0) = 4 and f π
6

5( ) = ,

(a) find the values of a and b 

(b) the range of f

(c)  sketch the graph of y = a + b sin x for 0  x  2π.

(ii) The function g : x  a + b sin x, where a and b have the same value as found 

 in part (i) is defined for the domain π
2

  x  k. Find the largest value of k for 

 which g(x) has an inverse.

SOlUTION 

(i)  (a)  f(0) = 4 ⇒ a + b sin 0 = 4

	 	 ⇒ a = 4 since sin 0 = 0

  f π
6( ) = 5 ⇒ 4 + b sin π

6( ) = 5

	 	 	 ⇒ 4 + 1
2b = 5		

	 	 	 ⇒ b = 2

–1

x
0

90° 270°

y = cos x

180° 360°

1

y

–1

–2

x
0

90° 270°

y = 2 cos x

180° 360°

1

2

y

Figure 7.41

sin
π
6

1
2( ) =
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 (b) f : x  4 + 2 sin x

  The maximum value of sin x is 1.

  So the maximum value of f is 4 + 2 × 1 = 6.

  The minimum value of sin x is −1.

  So the minimum value of f is 4 + 2 × ( –1) = 2.

  So the range of f is 2  f(x)  6. 

  (c) As a = 4 and b = 2, 

  y = a + b sin x is 

  y = 4 + 2 sin x. 

  Figure 7.42 shows the graph of 

  y = 4 + 2 sin x.

(ii) For a function to have an inverse it must be one-to-one.

The domain of g starts at π
2

 and must end at 3
2
π, as the curve turns here.

So k = 3
2
π.

x0 π 2ππ
2

2

1

y

4

5

6

3

3π
2

Figure 7.42

xO π 2π

2

1

y

4 g

5

6

3

3π
2

π
2

Figure 7.43
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ExERCISE 7F   1   Starting with the graph of y = sin x, state the transformations which can be 

used to sketch each of the following curves.

(i)  y = sin (x − 90°) (ii) y = sin 3x

(iii) 2y = sin x (iv) y x= sin
2

(v)  y = 2 + sin x

2  Starting with the graph of y = cos x, state the transformations which can be 

used to sketch each of the following curves.

(i)  y = cos (x + 60°) (ii) 3y = cos x

(iii) y = cos x + 1 (iv) y = cos 2x

3  For each of the following curves

(a)  sketch the curve

(b)  identify the curve as being the same as one of the following:

y = ± sin x,          y = ± cos x,          or          y = ± tan x.

(i)  y = sin (x + 360°) (ii) y = sin (x + 90°)

(iii) y = tan (x − 180°) (iv) y = cos (x − 90°)

(v)  y = cos (x + 180°)

4   Starting with the graph of y = tan x, find the equation of the graph and sketch 

the graph after the following transformations.

(i)  Translation of  
0
4







(ii)  Translation of  
–30

0
°





(iii) One-way stretch with scale factor 2 parallel to the x axis

5  The graph of y = sin x is stretched with scale factor 4 parallel to the y axis. 

(i)  State the equation of the new graph.

(ii)  Find the exact value of y on the new graph when x = 240°.

6  The function f is defined by f(x) = a + b cos 2x, for 0  x  π. It is given that

 f(0) = –1 and f 1
2
π( )  = 7.

(i)  Find the values of a and b.

(ii)  Find the x co-ordinates of the points where the curve y = f(x) intersects the 

x axis.

(iii) Sketch the graph of y = f(x).

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q8 June 2007]
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7   The function f is such that f(x) = a − b cos x for 0°  x  360°, where a and 

b are positive constants. The maximum value of f(x) is 10 and the minimum 

value is −2.

(i)  Find the values of a and b.

(ii)  Solve the equation f(x) = 0.

(iii) Sketch the graph of y = f(x).

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 November 2008]

8  The diagram shows the graph of y = a sin(bx) + c for 0  x  2π.

(i)  Find the values of a, b and c.

(ii)  Find the smallest value of x in the interval 0  x  2π for which y = 0.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 June 2009]

9  The function f is defined by f : x  5 − 3 sin 2x for 0  x  π.

(i)  Find the range of f.

(ii)  Sketch the graph of y = f(x).

(iii) State, with a reason, whether f has an inverse.

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q4 November 2009]

10  The function f : x  4 – 3 sin x is defined for the domain 0  x  2π.

(i)  Solve the equation f(x) = 2.

(ii)  Sketch the graph of y = f(x).

(iii) Find the set of values of k for which the equation f(x) = k has no solution.

The function g : x  4 − 3 sin x is defined for the domain 1
2π  x  A.

(iv)  State the largest value of A for which g has an inverse.

(v)  For this value of A, find the value of g–1(3).

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q11 June 2010]

–3

xO π 2π

3

y

9
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KEy POINTS

1    The point (x, y) at angle θ on the unit circle centre (0, 0) has co-ordinates 

(cos θ, sin θ) for all θ.

2  The graphs of sin θ, cos θ and tan θ are as shown below.

3  tan
sin
cos

θ θ
θ≡

4  sin2 θ + cos2 θ ≡ 1.

5  Angles can be measured in radians. π radians = 180°.

6  For a circle of radius r, arc length = rθ
  } (θ in radians). area of sector = 1

2
2r θ

7  The graph of y = f(x) + s is a translation of the graph of y = f(x) by 
0
s





 .

8  The graph of y = f(x – t) is a translation of the graph of y = f(x) by 
t
0





 .

9  The graph of y = –f(x) is a reflection of the graph of y = f(x) in the x axis.

10  The graph of y = af(x) is a one-way stretch of the graph of y = f(x) with scale 

 factor a
 
parallel to the y axis.

11  The graph of y = f(ax) is a one-way stretch of the graph of y = f(x) with scale 

 factor 
1
a 

parallel to the x axis.

θ

sin θ

θ0° 180°–180°–360° 360°

cos θ

θ

tan θ

0° 180°–180° 360°–360°

0° 180° 360°–180°–360°

1

–1

1

–1
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Vectors

We drove into the future looking into a rear view mirror.

Herbert Marshall McLuhan

●?	 What	information	do	you	need	

to	decide	how	close	the	aircraft	

which	left	these	vapour	trails	

passed	to	each	other?

A	quantity	which	has	both	size	and	direction	is	called	a	vector.	The	velocity	of	an	
aircraft	through	the	sky	is	an	example	of	a	vector,	having	size	(e.g.	600	mph)	and	
direction	(on	a	course	of	254°).	By	contrast	the	mass	of	the	aircraft	(100	tonnes)	
is	completely	described	by	its	size	and	no	direction	is	associated	with	it;	such	a	
quantity	is	called	a	scalar.

Vectors	are	used	extensively	in	mechanics	to	represent	quantities	such	as	force,	
velocity	and	momentum,	and	in	geometry	to	represent	displacements.	They	
are	an	essential	tool	in	three-dimensional	co-ordinate	geometry	and	it	is	this	
application	of	vectors	which	is	the	subject	of	this	chapter.	However,	before	
coming	on	to	this,	you	need	to	be	familiar	with	the	associated	vocabulary	and	
notation,	in	two	and	three	dimensions.

Vectors in two dimensions

Terminology

In	two	dimensions,	it	is	common	to	represent	a	vector	by	a	drawing	of	a	straight	
line	with	an	arrowhead.	The	length	represents	the	size,	or	magnitude,	of	the	
vector	and	the	direction	is	indicated	by	the	line	and	the	arrowhead.	Direction	is	
usually	given	as	the	angle	the	vector	makes	with	the	positive	x	axis,	with	the	
anticlockwise	direction	taken	to	be	positive.

The	vector	in	figure	8.1	has	magnitude	5,	
direction	+30°.	This	is	written	(5,	30°)	and	
said	to	be	in	magnitude−direction form	or	
in	polar form.	The	general	form	of	a	vector	
written	in	this	way	is	(r,	θ)	where	r	is	its	
magnitude	and	θ	its	direction.

30°

5
+

Figure 8.1

8
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Note

In the special case when the vector is representing real travel, as in the case of 

the velocity of an aircraft, the direction may be described by a compass bearing 

with the angle measured from north, clockwise. However, this is not done in this 

chapter, where directions are all taken to be measured anticlockwise from the 

positive x direction.

An	alternative	way	of	describing	a	vector	is	in	terms	of	components	in	given	

directions.	The	vector	in	figure	8.2	is	4	units	in	the	x	direction,	and	2	in	the	

y	direction,	and	this	is	denoted	by	 4
2







.

This	may	also	be	written	as	4i	+	2j,	where	i	is	a	vector	of	magnitude	1,	a	unit	

vector,	in	the	x	direction	and	j	is	a	unit	vector	in	the	y	direction	(figure	8.3).

In	a	book,	a	vector	may	be	printed	in	bold,	for	example	p	or	OP,	or	as	a	line	

between	two	points	with	an	arrow	above	it	to	indicate	its	direction,	such	as	O
→

P.	

When	you	write	a	vector	by	hand,	it	is	usual	to	underline	it,	for	example,	p	or	OP,	

or	to	put	an	arrow	above	it,	as	in	O
→
P.

To	convert	a	vector	from	component	form	to	magnitude−direction	form,	or	vice	

versa,	is	just	a	matter	of	applying	trigonometry	to	a	right-angled	triangle.

ExamPlE 8.1  Write	the	vector	a	=	4i	+	2j	in	magnitude−direction	form.

SOlUTION

4

2

4
2)) or 4i + 2j

Figure 8.2 

j

i

Figure 8.3 

4

a
2

θ

Figure 8.4 
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The	magnitude	of	a	is	given	by	the	length	a	in	figure	8.4.

a	=	 4 22 2+ 	 (using	Pythagoras’	theorem)

	 =	4.47	 (to	3	significant	figures)

The	direction	is	given	by	the	angle	θ.

	 tan .θ = =2
4 05

	 θ	=	26.6°	 (to	3	significant	figures)

The	vector	a	is	(4.47,	26.6°).

The	magnitude	of	a	vector	is	also	called	its	modulus	and	denoted	by	the	symbols	

| 	|	.	In	the	example	a	=	4i	+	2j,	the	modulus	of	a,	written	|	a	|,	is	4.47.	Another	

convention	for	writing	the	magnitude	of	a	vector	is	to	use	the	same	letter,	but	in	

italics	and	not	bold	type;	thus	the	magnitude	of	a	may	be	written	a.

ExamPlE 8.2  Write	the	vector	(5,	60°)	in	component	form.

SOlUTION

In	the	right-angled	triangle	OPX	

OX	=	5	cos	60°	=	2.5

XP	=	5	sin	60°	=	4.33	

(to	2	decimal	places)

O
→

P	is	
25

433

.

.







	or	2.5i	+	4.33j.

This	technique	can	be	written	as	a	general	rule,	for	all	values	of	θ.

(r,	θ)	→	
r

r

cos

sin

θ
θ





 	=	(r	cos	θ)i	+	(r	sin	θ)j

ExamPlE 8.3  Write	the	vector	(10,	290°)	in	component	form.

SOlUTION

In	this	case	r	=	10	and	θ	=	290°.

(10,	290°)	→	
10 290

10 290

342

940

cos

sin

.

– .

°
°






=






	to	2	decimal	places.	

This	may	also	be	written	3.42i	−	9.40j.

j

i X

P

O
60°

5

Figure 8.5 

10

290°

Figure 8.6 
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In	Example	8.3	the	signs	looked	after	themselves.	The	component	in	the	i	
direction	came	out	positive,	that	in	the	j	direction	negative,	as	must	be	the	case	for	

a	direction	in	the	fourth	quadrant	(270°	<	θ	<	360°).	This	will	always	be	the	case	

when	the	conversion	is	from	magnitude−direction	form	into	component	form.

The	situation	is	not	quite	so	straightforward	when	the	conversion	is	carried	out	

the	other	way,	from	component	form	to	magnitude−direction	form.	In	that	case,	

it	is	best	to	draw	a	diagram	and	use	it	to	see	the	approximate	size	of	the	angle	

required.	This	is	shown	in	the	next	example.

ExamPlE 8.4  Write	−5i	+	4j	in	magnitude−direction	form.

SOlUTION

In	this	case,	the	magnitude	r	 =	 5 42 2+ 	

	 =	 41
	 =	6.40		 (to	2	decimal	places).

The	direction	is	given	by	the	angle	θ	in	figure	8.7,	but	first	find	the	angle	α.

tan	α	=	
4
5									⇒									α	=	38.7°	 (to	nearest	0.1°)

so	 θ	=	180	−	α	=	141.3°

The	vector	is	(6.40,	141.3°)	in	magnitude−direction	form.

–5i
length 5

4j
length 4

O
α

i

j

r

θ

Figure 8.7 
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Vectors in three dimensions

Points

In	three	dimensions,	a	point	has	three	co-ordinates,	usually	called	x,	y	and	z.

The	axes	are	conventionally	arranged	as	shown	in	figure	8.8,	where	the	point	P	is	

(3,	4,	1).	Even	on	correctly	drawn	three-dimensional	grids,	it	is	often	hard	to	see	

the	relationship	between	the	points,	lines	and	planes,	so	it	is	seldom	worth	your	

while	trying	to	plot	points	accurately.

The	unit	vectors	i,	j	and	k	are	used	to	describe	vectors	in	three	dimensions.

z

2

1

–1

–1

1

2

3

2 3
P

4 y

x

O–1–2–3 1

Figure 8.8

This point is  
(3, 4, 1).
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Equal vectors

The	statement	that	two	vectors	a	and	b	are	equal	means	two	things.

●● The	direction	of	a	is	the	same	as	the	direction	of	b.

●● The	magnitude	of	a	is	the	same	as	the	magnitude	of	b.

If	the	vectors	are	given	in	component	form,	each	component	of	a	equals	the	

corresponding	component	of	b.

Position vectors

Saying	the	vector	a	is	given	by	3i	+	4j +	k	tells	you	the	components	of	the	vector,	

or	equivalently	its	magnitude	and	direction.	It	does	not	tell	you	where	the	vector	

is	situated;	indeed	it	could	be	anywhere.

All	of	the	lines	in	figure	8.9	represent	the	vector	a.

There	is,	however,	one	special	case	which	is	an	exception	to	the	rule,	that	of	a	

vector	which	starts	at	the	origin.	This	is	called	a	position vector.	Thus	the	line	

joining	the	origin	to	the	point	P(3,	4,	1)	is	the	position	vector	
3
4
1













	or	3i	+	4j	+	k.	

Another	way	of	expressing	this	is	to	say	that	the	point	P(3,	4,	1)	has	the	position	

vector	
3
4
1













.

k

i j

a
a

a

a

Figure 8.9 
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ExamPlE 8.5  Points	L,	M	and	N	have	co-ordinates	(4,	3),	(−2,	−1)	and	(2,	2).

(i)  Write	down,	in	component	form,	the	position	vector	of	L	and	the	vector	M
→

N.

(ii)	 What	do	your	answers	to	part	(i)	tell	you	about	the	lines	OL	and	MN?

SOlUTION

(i)  The	position	vector	of	L	is	O
→

L	=	 4
3







.

	 The	vector	M
→

N	is	also	 4
3







	(see	figure	8.10).

(ii)  Since	O
→

L	=	M
→

N,	lines	OL	and	MN	are	parallel	and	equal	in	length.

Note

A line joining two points, like MN in figure 8.10, is often called a line segment, 

meaning that it is just that particular part of the infinite straight line that passes 

through those two points.

The	vector	M
→

N	is	an	example	of	a	displacement	vector.	Its	length	represents	the	

magnitude	of	the	displacement	when	you	move	from	M	to	N.

The length of a vector

In	two	dimensions,	the	use	of	Pythagoras’	theorem	leads	to	the	result	that	a	

vector	a1i	+	a2j	has	length	|	a	|	given	by

|	a	|	=	 a a1
2

2
2+ .

y

4

3

2

1

–1

1 2 3 4 xO–1–2

M

N

L

Figure 8.10 
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	●		 Show	that	the	length	of	the	three-dimensional	vector	a1i	+	a2j	+	a3k	is	given	by

	 	 |	a	|	=	 a a a1
2

2
2

3
2+ + .

ExamPlE 8.6  Find	the	magnitude	of	the	vector	a	=	
2
5
3

−












.

SOlUTION

|	a	|		= + − +

= + +

=
=

2 5 3

4 25 9

38

616

2 2 2( )

. (to 2d.p.)

ExERCISE 8a   1  Express	the	following	vectors	in	component	form.

(i)  	 	 (ii)	

(iii)  	 	 (iv)	

2  Draw	diagrams	to	show	these	vectors	and	then	write	them	in	magnitude−	

direction	form.

(i)  2i	+	3j	 (ii)	 3
2–







	 (iii)	 –
–

4
4







(iv)  	−i	+	2j	 (v)	 3i	−	4j

3  Find	the	magnitude	of	these	vectors.

(i) 

1
2
3

–












	 (ii)	
4
0
2−













	 (iii)	 2i	+	4j	+	2k

(iv)  i	+	j	−	3k	 (v)	
6
2
3

–
−











 	

(vi)	 i	−	2k

y

3
a

2

1

–2

–1
43 x0–1–2 21

y

3

b
2

1

–2

–1
3 x0–1–2 1 2

y

3
c

2

1

3 4 x0 1 2

y

3

d2

1

3 4 x0 1 2
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4   Write,	in	component	form,	the	vectors	represented	by	the	line	segments	

joining	the	following	points.

(i)  	 (2,	3)	to	(4,	1)	 (ii)	 (4,	0)	to	(6,	0)

(iii)  	 (0,	0)	to	(0,	−4)	 (iv)	 (0,	−4)	to	(0,	0)

(v)  	 (0,	0,	0)	to	(0,	0,	5)	 (vi)	 (0,	0,	0)	to	(−1,	−2,	3)

(vii) 	 (−1,	−2	,	3)	to	(0,	0,	0)	 (viii)	 (0,	2,	0)	to	(4,	0,	4)

(ix)  	 (1,	2,	3)	to	(3,	2,	1)	 (x)	 (4,	−5,	0)	to	(−4,	5,	1)

5  The	points	A,	B	and	C	have	co-ordinates	(2,	3),	(0,	4)	and	(−2,	1).

(i)  Write	down	the	position	vectors	of	A	and	C.

(ii)  Write	down	the	vectors	of	the	line	segments	joining	AB	and	CB.

(iii) What	do	your	answers	to	parts	(i)	and	(ii)	tell	you	about

(a)  AB	and	OC

(b)  CB	and	OA?

(iv)  Describe	the	quadrilateral	OABC.

Vector calculations 

multiplying a vector by a scalar

When	a	vector	is	multiplied	by	a	number	(a	scalar)	its	length	is	altered	but	its	

direction	remains	the	same.

The	vector	2a	in	figure	8.11	is	twice	as	long	as	the	vector	a	but	in	the	same	

direction.

When	the	vector	is	in	component	form,	each	component	is	multiplied	by	the	

number.	For	example:

2	×	(3i	−	5j +	k)	=	6i	−	10j +	2k

				 2	×	
3
5
1

6
10
2

– –











=












.

The negative of a vector

In	figure	8.12	the	vector	−a	has	the	same	length	as	the	vector	a	but	the	opposite	

direction.

a 2a

Figure 8.11
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When	a	is	given	in	component	form,	the	components	of	−a	are	the	same	as	those	

for	a	but	with	their	signs	reversed.	So

–
–

–23
0

11

23
0

11












=

+













adding vectors

When	vectors	are	given	in	component	form,	they	can	be	added	component	by	

component.	This	process	can	be	seen	geometrically	by	drawing	them	on	graph	

paper,	as	in	the	example	below.

ExamPlE 8.7  Add	the	vectors	2i	−	3j	and	3i	+	5j.

SOlUTION

2i	−	3j	+	3i	+	5j	=	5i	+	2j

The	sum	of	two	(or	more)	vectors	is	called	the	resultant	and	is	usually	indicated	

by	being	marked	with	two	arrowheads.

a –a

Figure 8.12

2i

3i

3i + 5j 5j

5i + 2j

–3j
2i – 3j

Figure 8.13
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Adding	vectors	is	like	adding	the	legs	of	a	journey	to	find	its	overall	outcome	(see	

figure	8.14).

When	vectors	are	given	in	magnitude−direction	form,	you	can	find	their	

resultant	by	making	a	scale	drawing,	as	in	figure	8.14.	If,	however,	you	need	

to	calculate	their	resultant,	it	is	usually	easiest	to	convert	the	vectors	into	

component	form,	add	component	by	component,	and	then	convert	the	answer	

back	to	magnitude−direction	form.

Subtracting vectors

Subtracting	one	vector	from	another	is	the	same	as	adding	the	negative	of	the	

vector.

ExamPlE 8.8  Two	vectors	a	and	b	are	given	by

a	=	2i	+	3j	 b	=	−i	+	2j.

(i)	 Find	a	−	b.	

(ii)	 Draw	diagrams	showing	a,	b,	a	−	b.

SOlUTION

(i)	 a	−	b	 =	(2i	+	3j)	−	(−i	+	2j)
	 	 =	3i	+	j

(ii)

resultant

leg 2

leg 1
leg 3

Figure 8.14

a

–b

a + (–b) = a – b
j

i

b

a

Figure 8.15
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When	you	find	the	vector	

represented	by	the	line	segment		

joining	two	points,	you	are	in		

effect	subtracting	their	position		

vectors.	If,	for	example,

P	is	the	point	(2,	1)	and	Q	is	the

point	(3,	5),	P
→
Q	is	

1
4





 ,	as	

figure	8.16	shows.

You	find	this	by	saying

P
→
Q	=	P

→
O	+	O

→
Q	=	−p	+	q.

In	this	case,	this	gives

P
→
Q	=	–

2
1

3
5

1
4





 +




 = 





as	expected.

This	is	an	important	result:

P
→
Q	=	q	−	p

where	p	and	q	are	the	position	vectors	of	P	and	Q.

Geometrical figures

It	is	often	useful	to	be	able	to	express	lines	in	a	geometrical	figure	in	terms	of	

given	vectors.

aCTIVITY 8.1  The	diagram	shows	a	cuboid	OABCDEFG.	P,	Q,	R,	S	and	T	are	the	mid-points	of	

the	edges	they	lie	on.	The	origin	is	at	O	and	the	axes	lie	along	OA,	OC	and	OD,	as	

shown	in	figure	8.17.

O
→

A	=	
6
0
0













,
	
O
→

C	=	
0
5
0













,
	
O
→

D	=	
0
0
4













y

2

4

6

1

3

5

4 x0 2 3 51

1
4))

P(2, 1)

Q(3, 5)

Figure 8.16

D E

G S

T

F

O A

C B

R

Q

Px

y

z

Figure 8.17
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(i)  Name	the	points	with	the	following	co-ordinates.

(a)  (6,	5,	4)	 (b)	 (0,	5,	0)	 (c)	 (6,	2.5,	0)

(d)  (0,	2.5,	4)	 (e)	 (3,	5,	4)

(ii)  Use	the	letters	in	the	diagram	to	give	displacements	which	are	equal	to	the	

following	vectors.	Give	all	possible	answers;	some	of	them	have	more	than	one.

(a)  	
6
5
4













	 (b)	
6
0
4













	 (c)	
0
5
4













	 (d)	
−
−













6
5
4

	 (e)	
−











3
25
4
.

ExamPlE 8.9  Figure	8.18	shows	a	hexagonal	prism.

The	hexagonal	cross-section	is	regular	and	consequently	A
→
D	=	2B

→
C.	

A
→

B	=	p,	B
→
C	=	q	and	B

→
G	=	r.	Express	the	following	in	terms	of	p,	q and	r.

(i)	 A
→
C	 (ii)	 A

→
D	 (iii)	 H

→
I	 (iv)	 I

→
J	

(v)	 E
→

F	 (vi)	 B
→

E	 (vii)	 A
→

H	 (viii)	 F
→

I

SOlUTION

(i)	 A
→
C	 =	A

→
B	+	B

→
C

	 	 =	p	+	q

(ii)	 A
→
D	=	2B

→
C	=	2q 

(iii)	 H
→

I	=	C
→

D

	 	Since	A
→
C	+	C

→
D	=	A

→
D

  p	+	q	+	C
→

D	=	2q	

	 	 C
→

D	=	q	−	p

 So	 H
→

I	=	q	−	p

A

p

q

r

D

C
B

G H

I

J

EF

Figure 8.18

A

B C
q

p
p + q

p + q

2q

A

A D

C

B C
q

p
p + q

p + q

2q
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(iv)	 I
→
J	 =	D

→
E		

	 	 =	−A
→

B

	 	 =	−p 

(v)	 E
→

F		=	−B
→
C	

	 	 =	−q

(vi)	 	B
→

E	=	B
→
C	+	C

→
D	+	D

→
E	

	 	 =	q	+	(q	−	p)	+	−p
	 	 =	2q	−	2p

	 Notice	that	B
→

E	=	2C
→

D.

(vii)	 A
→

H		=	A
→

B	+	B
→
C	+	C

→
H

	 	 =	p	+	q	+	r

(viii)	 F
→

I		=	F
→
E	+	E

→
J	+	J

→
I

	 	 =	q	+	r	+	p

Unit vectors

A	unit	vector	is	a	vector	with	a	magnitude	of	1,	like	i	and	j.	To	find	the	unit	

vector	in	the	same	direction	as	a	given	vector,	divide	that	vector	by	its	magnitude.

Thus	the	vector	3i	+	5j	(in	figure	8.20)	has	magnitude	 3 5 342 2+ = ,	and	so	

the	vector	
3

34
i	+	 5

34
j	is	a	unit	vector.	It	has	magnitude	1.

The	unit	vector	in	the	direction	of	vector	a	is	written	as	â	and	read	as	‘a	hat’.

A

A

B C

D

E

	C
→

H	=	B
→

G

	F
→
E	=	B

→
C,	E

→
J	=	B

→
G,	J

→
I	=	A

→
B

Figure 8.20

y

j

2j

3j
3i + 5j

4j

5j

2i 3i 4i xO i

This is the unit vector
3

34

5

34
i j+

Figure 8.19
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ExamPlE 8.10  Relative	to	an	origin	O,	the	position	vectors	of	the	points	A,	B	and	C	are	given	by

O
→

A	=	
−

−













2
3
2

,		O
→

B	=		
0
1
3−













	

and	O
→

C	=		
−











2
3
1

.	 	

(i)  Find	the	unit	vector	in	the	direction	A
→

B.

(ii)  Find	the	perimeter	of	triangle	ABC.

SOlUTION 

For	convenience	call	O
→

A	=	a,		O
→

B	=	b

	

and	O
→

C	=	c.	 	

(i)  A
→

B	= b − a	=	
0
1
3

2
3
2

2
2
1−












−

−

−












= −

−













	

To	find	the	unit	vector	in	the	direction	A
→

B,	you	need	to	divide	A
→

B	by	its	

magnitude.

|	A→B	|	= + − + −

=
=

2 2 1

9

3

2 2 2( ) ( )

	 So	the	unit	vector	in	the	direction	A
→

B	is	1
3

2
3
2
3
1
3

2
2
1

−
−












= −

−

















(ii)  The	perimeter	of	the	triangle	is	given	by	|	A→B	|	+	|	A→C	|	+	|	B→C	|.

	 	A
→

C	= c − a	 =	
−










−

−

−












=












2
3
1

2
3
2

0
0
3

	 	 ⇒	|	A→C	|	 =	 0 0 32 2 2+ +
	 	 	 = 3

	 	B
→

C	= c − b	 =	
−










−

−












=

−











2
3
1

0
1
3

2
2
4

	 	 ⇒	|	B→C	|	 =	 ( )− + +2 2 42 2 2

	 	 	 = 24

	 Perimeter	of	ABC	=	|	A→B	|	+	|	A→C	|	+	|	B→C	|
	 	 =	3	+	3	+ 24

	 	 =	10.9

This is the 

magnitude of A
→

B.



E
x
e
rc

ise
 8

B

269

P1 

8

ExERCISE 8B   1  Simplify	the	following.

(i) 
2
3

4
5





 +





 	 (ii)	 2

1
1
2–

–



 +







(iii) 
3
4

3
4





 +







–
–

	 (iv)	 3
2
1

2
1
2





 +





–

(v)  6(3i	−	2j)	−	9(2i	−	j)

2  The	vectors	p,	q	and	r	are	given	by

p	=	3i	+	2j	+	k												q	=	2i	+	2j	+	2k											r	=	−3i	−	j	−	2k.

	 Find,	in	component	form,	the	following	vectors.

(i)  p	+	q	+	r	 (ii)	 p	−	q	 (iii)	 p	+	r	

(iv)  3(p	−	q)	+	2(p	+	r)	 (v)	 4p	−	3q	+	2r

3  In	the	diagram,	PQRS	is	a	parallelogram	and	P
→
Q	=	a,	P

→
S	=	b.

(i)  Write,	in	terms	of	a	and	b,	

the	following	vectors.

(a)  Q
→

R	 (b)	 P
→

R

(c)  Q
→

S

(ii)  The	mid-point	of	PR	is	M.	Find

(a)  P
→
M	 (b)	Q

→
M.

(iii) Explain	why	this	shows	you	that	the	

diagonals	of	a	parallelogram	bisect	each	other.

4     In	the	diagram,	ABCD	is	a	kite.	

AC	and	BD	meet	at	M.	

	 A
→

B	=	i	+	j	 and	 	

	 A
→
D	=	i	−	2j

(i)  Use	the	facts	that	the	diagonals	

of	a	kite	meet	at	right	angles	

and	that	M	is	the	mid-point	of	

AC	to	find,	in	terms	of	i	and	j,

  (a)	 A
→

M	 (b)	 A
→

C

  (c)	 B
→

C	 (d)	 C
→

D.

(ii)  Verify	that	|	A→B	|	=	|	B→C	|	and

  |	A→D	|	=	|	C→D	|.

Q R

P Sb

a

j

i

M
CA

D

B
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5  	 In	the	diagram,	ABC	is	a	triangle.	

L,	M	and	N	are	the	mid-points	of	

the	sides	BC,	CA	and	AB.

A
→

B	=	p									and									A
→

C	=	q

(i)  Find,	in	terms	of	p	and	q,	B
→

C,	

  M
→

N,	L
→
M	and	L

→
N.

(ii)  Explain	how	your	results	from	part	(i)	show	you	that	the	sides	of	triangle	

LMN	are	parallel	to	those	of	triangle	ABC,	and	half	their	lengths.

6  Find	unit	vectors	in	the	same	directions	as	the	following	vectors.

(i) 
2
3







	 (ii)	 3i	+	4j	 (iii)	
–
–

2
2





 	 (iv)	 5i	−	12j

7  Find	unit	vectors	in	the	same	direction	as	the	following	vectors.

(i) 

1
2
3













	 (ii)	 2i	–	2j	+	k	 (iii)	 3i	–	4k	 	

	

(iv) 

−

−













2
4
3

	 (v)	 5i	–	3j	+	2k	 (vi)	
4
0
0













8  Relative	to	an	origin	O,	the	position	vectors	of	the	points	A,	B	and	C	are	

given	by

O
→

A	=	
2
1
3













,		O
→

B	=		
−











2
4
3 	

and	O
→

C	=		
−











1
2
1

.	

	 Find	the	perimeter	of	triangle	ABC.

9  Relative	to	an	origin	O,	the	position	vectors	of	the	points	P	and	Q	are	given	

	 by	O
→

P	=	3i +	j 	+	4k	and	O
→

Q	=	i +	xj 	−	2k.

Find	the	values	of	x	for	which	the	magnitude	of	PQ	is	7.

10  Relative	to	an	origin	O,	the	position	vectors	of	the	points	A	and	B	are	given	by

O
→

A	=	
4
1
2−













								and									O
→

B	=		
3
2
4–













.	

(i)  Given	that	C	is	the	point	such	that	A
→

C	=	2A
→

B,	find	the	unit	vector	in	the	

direction	of	O
→

C.

The	position	vector	of	the	point	D	is	given	by	O
→

D	=	
1
4
k













,	where	k	is	a

constant,	and	it	is	given	that	O
→

D	=	mO
→

A	+	nO
→

B,	where	m	and	n	are	constants.

(ii)  Find	the	values	of	m, n	and	k.
  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q9 June 2007]

N

B C

A

M

L
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The angle between two vectors

	●		 As	you	work	through	the	proof	in	this	section,	make	a	list	of	all	the	results	that	

you	are	assuming.

To	find	the	angle	θ	between	the	

two	vectors

O
→

A	=	a	=	a1i	+	a2j											

and										

O
→

B	=	b	=	b1i	+	b2j

start	by	applying	the	cosine	rule	to		

triangle	OAB	in	figure	8.21.

cosθ = ×
OA +OB – AB

2OA OB

2 2 2

In	this,	OA,	OB	and	AB	are	the	lengths	of	the	vectors	O
→

A,	O
→

B	and	A
→

B,	and	so

OA	=	|	a	|	=	 a a1
2

2
2+ 					and					OB	=	|	b	|	=	 b b1

2
2
2+ .

The	vector	A
→

B	=	b	−	a	 =	(b1i	+	b2j)	−	(a1i	+	a2j)

	 =	(b1	−	a1)i	+	(b2	−	a2)j

and	so	its	length	is	given	by	

AB	=	|	b	−	a	|	=	 ( – ) ( – ) .b a b a1 1
2

2 2
2+

Substituting	for	OA,	OB	and	AB	in	the	cosine	rule	gives

cos
( ) ( ) – [( – ) ( – ) ]

θ =
+ + + +a a b b b a b a

a

2
1

2
2

2
1

2
2 1 1

2
2 2

2

22 11
2
2

2
1

2
2+ × +a b b

										
=

+ + + + + +( )a a b b b a b a b a b a2
1

2
2

2
1

2
2

2
1 1 1

2
1

2
2 2 2

2
22 2

2

– – –

aaaa bb

This	simplifies	to

cosθ =
+2 2

2
1 1 2 2a b a b

aa bb 		=
+a b a b1 1 2 2

aa bb

The	expression	on	the	top	line,	a1b1	+	a2b2,	is	called	the	scalar product	(or	dot 

product)	of	the	vectors	a	and	b	and	is	written	a . b.	Thus

cos .θ = aa..bb
aa bb

This	result	is	usually	written	in	the	form

a . b	=	|	a	|	|	b	|	cos	θ.

y

xO

θ

a b

(b1, b2)

(a1, a2)
A

B

Figure 8.21
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The	next	example	shows	you	how	to	use	it	to	find	the	angle	between	two	vectors	

given	numerically.

ExamPlE 8.11  Find	the	angle	between	the	vectors	
3
4





 	

and	
5

12–




 .

SOlUTION

Let	 a = 





3
4

	 ⇒	 |	a	|	=	 3 42 2+ 	=	5

and	 b = 





5
12–

	 ⇒	 |	b	|	=	 5 122 2+ (– ) 	=	13.

The	scalar	product

3
4

5
12











.

–
	=	3	×	5	+	4	×	(−12)

	 =	15	−	48

	 =	−33.

Substituting	in	a . b	=	|	a	|	|	b	|	cos	θ	gives

	 	−33	 =	5	×	13	×	cos	θ

cos –θ = 33
65

⇒	 θ	 =	120.5°.

Perpendicular vectors

Since	cos	90°	=	0,	it	follows	that	if	vectors	a	and	b	are	perpendicular	then	

a . b	=	0.

Conversely,	if	the	scalar	product	of	two	non-zero	vectors	is	zero,	they	are	

perpendicular.

ExamPlE 8.12  Show	that	the	vectors	aa = 





2
4

	and	bb = 





6
3–

	are	perpendicular.

SOlUTION

The	scalar	product	of	the	vectors	is

aa..bb = 











2
4

6
3

.
–

=	2	×	6	+	4	×	(−3)

=	12	−	12	=	0.

Therefore	the	vectors	are	perpendicular.
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Further points concerning the scalar product

●● You	will	notice	that	the	scalar	product	of	two	vectors	is	an	ordinary	

number.	It	has	size	but	no	direction	and	so	is	a	scalar,	rather	than	a	

vector.	It	is	for	this	reason	that	it	is	called	the	scalar	product.	There	is	

another	way	of	multiplying	vectors	that	gives	a	vector	as	the	answer;	it	is	

called	the	vector product.	This	is	beyond	the	scope	of	this	book.

●● The	scalar	product	is	calculated	in	the	same	way	for	three-dimensional	

vectors.	For	example:

2
3
4

5
6
7

2 5 3 6 4 7 56























= × + × + × =. .

	 In	general

a
a
a

b
b
b

a b a b a b
1

2

3

1

2

3

1 1 2 2 3 3
























= + +.

●● The	scalar	product	of	two	vectors	is	commutative.	It	has	the	same	value	

whichever	of	them	is	on	the	left-hand	side	or	right-hand	side.	Thus	a . b	=	b . a,	

as	in	the	following	example.

2
3

6
7

2 6 3 7 33









 = × + × =.

		
				

6
7

2
3

6 2 7 3 33









 = × + × =. .

	●		 How	would	you	prove	this	result?

The angle between two vectors

The	angle	θ	between	the	vectors	a	=	a1i	+	a2j	and	b	=	b1i	+	b2j	in	two	dimensions	

is	given	by

cosθ =
+

+ × +
=

a b a b

a a b b

1 1 2 2

2
1

2
2

2
1

2
2

aa..bb

aa bb

where	a . b	is	the	scalar	product	of	a	and	b.	This	result	was	proved	by	using	the	

cosine	rule	on	page	271.
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	●		 Show	that	the	angle	between	the	three-dimensional	vectors

	 a	=	a1i	+	a2j	+	a3k								and								b	=	b1i	+	b2j	+	b3k

is	also	given	by

cosθ = aa..bb

aa bb

but	that	the	scalar	product	a . b	is	now

	 	 a . b	=	a1b1	+	a2b2	+	a3b3.

Working in three dimensions

When	working	in	two	dimensions	you	found	the	angle	between	two	lines	by	

using	the	scalar	product.	As	you	have	just	proved,	this	method	can	be	extended	

into	three	dimensions,	and	its	use	is	shown	in	the	following	example.

ExamPlE 8.13  The	points	P,	Q	and	R	are	(1,	0,	−1),	(2,	4,	1)	and	(3,	5,	6).	Find	∠QPR.

SOlUTION

The	angle	between	P
→

Q	and	P
→

R	is	given	by	θ	in

	

→ →
= → →cosθ PQ PR

PQ PR

.

In	this

P
→

Q	=	PQ
� ���

=























=












2
4
1

1
0
1

1
4
2

–
– 	

|	P
→

Q	|	=	 1 4 22 2 2+ +
	
=	 21

Similarly

P
→

R	=PR
� ��

=























=












3
5
6

1
0
1

2
5
7

–
– 	

|	P
→

R	|	=	 2 5 72 2 2+ +
	
=	 78

Therefore

P
→

Q		.	P
→

R	=	PQ PR
� ��� � ��

. =
























1
4
2

2
5
7

.

	 =	1	×	2	+	4	×	5	+	2	×	7

	 =	36
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Substituting	gives

cosθ =
×
36

21 78

⇒	θ	=	27.2°

! 	 You	must	be	careful	to	find	the	correct	angle.	To	find	∠QPR	(see	figure	8.23),	

you	need	the	scalar	product	P
→

Q	.	P
→

R,	as	in	the	example	above.	If	you	take

Q
→

P	.	P
→

R,	you	will	obtain	∠Q´PR,	which	is	(180°	−	∠QPR).

ExERCISE 8C   1  Find	the	angles	between	these	vectors.

(i)  2i	+	3j	and	4i	+	j	 (ii)	 2i	−	j	and	i	+	2j

(iii) 
–
–

–
–

1
1

1
2











and 	 (iv)	 4i	+	j	and	i	+	j

(v) 
2
3

6
4











and

–
	 (vi)	

3
1

6
2–

–









and

2  The	points	A,	B	and	C	have	co-ordinates	(3,	2),	(6,	3)	and	(5,	6),	respectively.

(i)  Write	down	the	vectors	A
→

B	and	B
→

C.

(ii)  Show	that	the	angle	ABC	is	90°.

(iii) Show	that	|	A→B	|	=	|	B→C	|.	
(iv)  The	figure	ABCD	is	a	square.	

  Find	the	co-ordinates	of	the	point	D.

θ 1
4
2) )

2
5
7) )

(1, 0, –1)

(2, 4, 1)

(3, 5, 6)

P

Q

R

Figure 8.22

R

Q

P

Q′

θ

Figure 8.23
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3   Three	points	P,	Q	and	R	have	position	vectors,	p,	q	and	r	respectively,	where

p	=	7i	+	10j,		 q	=	3i	+	12j,		 r	=	−i	+	4j.

(i)  Write	down	the	vectors	P
→

Q	and	R
→

Q,	and	show	that	they	are	perpendicular.

(ii)  Using	a	scalar	product,	or	otherwise,	find	the	angle	PRQ.

(iii) Find	the	position	vector	of	S,	the	mid-point	of	PR.

(iv)  Show	that	|	Q→S	|	=	|	R→S	|.	
Using	your	previous	results,	or	otherwise,	find	the	angle	PSQ.	 	

  [MEI]

4  Find	the	angles	between	these	pairs	of	vectors.

(i) 

2
1
3

2
1
4

























and – 	 (ii)	
1
1
0

3
1
5

–
























and

(iii) 3i	+	2j	−	2k	and	−4i	−	j	+	3k

5  In	the	diagram,	OABCDEFG	is	a	cube	in	which	each	side	has	length	6.	Unit	

	 vectors	i,	j	and	k	are	parallel	to	O
→

A,	O
→

C	and	O
→

D	respectively.	The	point	P	is	

	 such	that	A
→

P	=	13A
→

B	and	the	point	Q	is	the	mid-point	of	DF.

(i)  Express	each	of	the	vectors	O
→

Q	and	P
→
Q	in	terms	of	i,	j	and	k.

(ii)  Find	the	angle	OQP.

  [Cambridge AS & A Level Mathematics 9709, Paper 12 Q6 November 2009]

6  Relative	to	an	origin	O,	the	position	vectors	of	points	A	and	B	are	2i	+	j	+	2k	

and	3i	−	2j	+	pk	respectively.

(i)  Find	the	value	of	p	for	which	OA	and	OB	are	perpendicular.

(ii)  In	the	case	where	p	=	6,	use	a	scalar	product	to	find	angle	AOB,	correct	to	

the	nearest	degree.

(iii) Express	the	vector	A
→

B	in	terms	of	p	and	hence	find	the	values	of	p	for	

which	the	length	of	AB	is	3.5	units.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 June 2008]

D E

G

Q

F

O A

C B

P

i

j

k
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7   Relative	to	an	origin	O,	the	position	vectors	of	the	points	A	and	B	are	given	by

  O
→

A	=	2i −	8j 	+	4k						and						O
→

B	=	7i +	2j 	−	k.

(i)  Find	the	value	of	O
→

A	 .	O
→

B	and	hence	state	whether	angle	AOB	is	acute,	

obtuse	or	a	right	angle.

(ii)  The	point	X	is	such	that	A
→

X	=	2
5A

→
B.	Find	the	unit	vector	in	the	direction	

of	OX.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 June 2009]

8  Relative	to	an	origin	O,	the	position	vectors	of	the	points	A	and	B	are	given	by

  	 O
→

A	=	2i + 3j −	k						and						O
→

B	=	4i −	3j +	2k.

(i)  Use	a	scalar	product	to	find	angle	AOB,	correct	to	the	nearest	degree.

(ii)  Find	the	unit	vector	in	the	direction	of	A
→

B.

(iii) The	point	C	is	such	that		O
→

C	=	6j +	pk,	where	p	is	a	constant.	Given	that	

  the	lengths	of	A
→

B	and	A
→

C	are	equal,	find	the	possible	values	of	p.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q11 June 2005]

9  Relative	to	an	origin	O,	the	position	vectors	of	the	points	P	and	Q	are	given	by

  O
→

P	=	
−











2
3
1

						and						O
→

Q	=	
2
1
q













,						where	q	is	a	constant.	

(i)  In	the	case	where	q	=	3,	use	a	scalar	product	to	show	that	cos	POQ	=	17.

(ii)  Find	the	values	of	q	for	which	the	length	of	P
→

Q	is	6	units.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 November 2005]

10  The	diagram	shows	a	semi-circular	prism	with	a	horizontal	rectangular	

base	ABCD.	The	vertical	ends	AED	and	BFC	are	semi-circles	of	radius	6	cm.	

The	length	of	the	prism	is	20	cm.	The	mid-point	of	AD	is	the	origin	O,	the	

mid-point	of	BC	is	M	and	the	mid-point	of	DC	is	N.	The	points	E	and	F	are	

the	highest	points	of	the	semi-circular	ends	of	the	prism.	The	point	P	lies	on	

EF	such	that	EP	=	8	cm.

	

	 Unit	vectors	i,	j	and	k	are	parallel	to	OD,	OM	and	OE	respectively.

(i)  Express	each	of	the	vectors	P
→
A	and	P

→
N	in	terms	of	i,	j	and	k.

(ii)  Use	a	scalar	product	to	calculate	angle	APN.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 November 2008]

O D

A

C

F

E B

P

i

j
k N

M

8 cm

20 cm

6 cm
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11   	The	diagram	shows	the	roof	of	a	house.	The	base	of	the	roof,	OABC,	is	

rectangular	and	horizontal	with	OA	=	CB	=	14	m	and	OC	=	AB	=	8	m.	The	

top	of	the	roof	DE	is	5	m	above	the	base	and	DE	=	6	m.	The	sloping	edges	OD,	

CD,	AE	and	BE	are	all	equal	in	length.

	 Unit	vectors	i	and	j	are	parallel	to	OA	and	OC	respectively	and	the	unit	vector	

k	is	vertically	upwards.

(i)  Express	the	vector	O
→

D	in	terms	of	i,	j	and	k,	and	find	its	magnitude.

(ii)  Use	a	scalar	product	to	find	angle	DOB.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q8 June 2006]

12  The	diagram	shows	a	cube	OABCDEFG	in	which	the	length	of	each	side	is	

4	units.	The	unit	vectors	i,	j	and	k	are	parallel	to	O
→

A,	O
→

C	and	O
→

D	respectively.	

The	mid-points	of	OA	and	DG	are	P	and	Q	respectively	and	R	is	the	centre	of	

the	square	face	ABFE.

(i)  Express	each	of	the	vectors	P
→

R	and	P
→

Q	in	terms	of	i,	j	and	k.

(ii)  Use	a	scalar	product	to	find	angle	QPR.

(ii)  Find	the	perimeter	of	triangle	PQR,	giving	your	answer	correct	to	

1	decimal	place.

  [Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 November 2007]

O

A

B
E

C

D

8 m

6 m

14 m
i

j
k

D E

R

Q

G F

O P A

C B

i

j
k
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KEY POINTS

1  A	vector	quantity	has	magnitude	and	direction.

2  A	scalar	quantity	has	magnitude	only.

3  Vectors	are	typeset	in	bold,	a	or	OA,	or	in	the	form	O
→

A.	They	are	

handwritten	either	in	the	underlined	form	a,	or	as	O
→

A.

4  The	length	(or	modulus	or	magnitude)	of	the	vector	a	is	written	as	a	or	

as	|	a	|.

5  Unit	vectors	in	the	x, y	and	z	directions	are	denoted	by	i,	j	and	k,	respectively.

6  A	vector	may	be	specified	in

●● magnitude−direction	form:	(r,	θ)	(in	two	dimensions)

●● component	form:	xi	+	yj	or	
x
y





 	(in	two	dimensions)

 xi	+	yj	+	zk	or	
x
y
z













	(in	three	dimensions).

7  The	position	vector	O
→

P	of	a	point	P	is	the	vector	joining	the	origin	to	P.

8  The	vector	A
→

B	is	b	−	a,	where	a	and	b	are	the	position	vectors	of	A	and	B.

9  The	angle	between	two	vectors,	a	and	b,	is	given	by	θ	in

	 	 cosθ = aa..bb

aa bb

	 where	a . b	=	a1b1	+	a2b2	(in	two	dimensions)

	 	 	 =	a1b1	+	a2b2	+	a3b3	(in	three	dimensions).
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Answers

Chapter 1

●?	 (Page 1)
Like terms have the same variable; 
unlike terms do not.

Note that the power of the variable 
must also be the same, for example 
4x and 5x2 are unlike terms and
cannot be collected.

Exercise 1A (Page 4)

  1 (i)  9x  

 (ii) p − 13  

 (iii) k − 4m + 4n  

 (iv) 0  

 (v) r + 2s − 15t

  2 (i) 4(x + 2y)  

 (ii) 3(4a + 5b − 6c)  

 (iii) 12(6f − 3g − 4h)  

 (iv) p(p − q + r)  

 (v) 12k(k + 12m − 6n)

  3 (i) 28(x + y)  

 (ii) 7b + 13c 

 (iii) −p + 24q + 33r  

 (iv) 2(5l + 3w − h)  

 (v) 2(w + 2v)

  4 (i) 2ab  

 (ii) n(k − m)  

 (iii) q(2p − s)  

 (iv) 4(x + 2)  

 (v) −2

  5 (i) 6x3y2  

 (ii) 30a3b3c4 

 (iii) k2m2n2  

 (iv) 162p4q4r 4  

 (v) 24r2s2t2u2

  6 (i) b
c

 (ii) 
e
f2   

 (iii) x
5

 (iv) 2a  

 (v) 
2
pr   

  7 (i) 1  

 (ii)  5  

 (iii) pq  

 (iv) 
g h

f

2 3

23
      

 (v)  m
n

3

2
 

  8 (i)  5
6
x  

 (ii)  49
60

x  

 (iii) z
3

  

 (iv) 5
12
x  

 (v) 27
40

y  

  9 (i)  8
x

  

  (ii) 
y x

xy
+

  

  (iii) 
4 2y x

xy
+

 

 (iv) 
p q

pq

2 2+
   

 (v)  bc ac ab
abc

– +   

10 (i)  3 1
4

x –  

 (ii) 7 3
15

x +  

 (iii) 11 29
12

x –  

 (iv) 76 23
10
– x  

 (v) 26 3
24
x –  

11 (i) 1
2 

 (ii) 
2

2 1 3( )x +  

 (iii) ( – )y
x
3

4

3
 

  (iv) 6

 (v) x x3 3 2
12

( )+  
 

●?	 (Page 6)
A variable is a quantity which can 
change its value. A constant always 
has the same value.

●?	 (Page 6)
Starting from one vertex, the 
polygon can be divided into n − 2 
triangles, each with angle sum 180°.

The angles of the triangles form the 
angles of the polygon.

●?	 (Page 7)
You get 0 = 0.

Exercise 1B (Page 9)

  1  (i) a = 20  

  (ii) b = 8 

  (iii) c = 0  

  (iv) d = 2        

  (v) e = −5  

  (vi) f = 1.5  

  (vii) g = 14  

  (viii) h = 0

  (ix) k = 48  

  (x) l = 9  

  (xi) m = 1  

  (xii) n = 0  

Neither University of Cambridge International Examinations nor OCR bear any responsibility for the example 
answers to questions taken from their past question papers which are contained in this publication.
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P1   2 (i) a + 6a + 75 = 180 

 (ii) 15°, 75°, 90°  

  3 (i) 2(r − 2) + r = 32  

 (ii) 10, 10, 12    

  4 (i)  2d + 2(d − 40) = 400  

 (ii)  d = 120, area = 9600 m2  

  5 (i) 3x + 49 = 5x + 15  

 (ii) $1  

  6 (i)  6c − q − 25  

 (ii) 6c − 47 = 55 : 17 correct 

  7 (i)  22m + 36(18 − m) 

 (ii) 6 kg

  8 (i) a + 18 = 5(a − 2)  

 (ii) 7

Exercise 1C (Page 12)

  1 (i) a v u
t

= –  
 

 (ii) t v u
a

= –  
 

  2 h V
lw

=

  3 r A= π

  4 (i) s v u
a

=
2 2

2
–   

 (ii) u v as= ± 2 2–   

  5 h
A r

r
= – 2

2

2π
π

  

  6 a s ut
t

= 2
2

( – )  

  7 b h a= ± 2 2–      

  8  g l
T

= 4 2

2
π    

  9 m E
gh v

=
+

2
2 2   

10 R
R R

R R
= +

1 2

1 2
  

11 h A
a b

= +
2   

12 u
fv

v f
=

–
  

13 d u
u f

=
2

–
 

14 V mRT
M p p

=
( – )1 2

  

●?	 (Page 12)
  1 Constant acceleration formula

  2 Volume of a cuboid

  3 Area of a circle

  4 Constant acceleration formula

  5 Surface area of a closed cylinder

  6 Constant acceleration formula

  7  Pythagoras’ theorem

  8 Period of a simple pendulum

  9 Energy formula

10 Resistances

11 Area of a trapezium

12 Focal length

13 Focal length

14 Pressure formula

●?	 (Page 17)
100 m

Exercise 1D (Page 18)

  1 (i) (a + b)(l + m)  

 (ii) (p − q)(x + y)  

 (iii) (u − v)(r + s)  

 (iv) (m + p)(m + n)  

 (v) (x + 2)(x − 3) 

 (vi) (y + 7)(y + 3)  

 (vii) (z + 5)(z − 5)  

 (viii)  (q − 3)(q − 3) = (q − 3)2  

 (ix) (2x + 3)(x + 1) 

 (x) (3v − 10)(2v + 1)

  2 (i) a2 + 5a + 6  

 (ii) b2 + 12b + 35  

 (iii) c2 − 6c + 8  

 (iv) d 2 − 9d + 20  

 (v) e2 + 5e − 6  

 (vi) g2 − 9  

 (vii) h2 + 10h + 25  

 (viii)  4i2 − 12i + 9  

 (ix) ac + ad + bc + bd  

 (x) x2 − y2

  3 (i) (x + 2)(x + 4)  

 (ii) (x − 2)(x − 4)  

 (iii) (y + 4)(y + 5)  

 (iv) (r + 5)(r − 3)  

 (v) (r − 5)(r + 3)  

 (vi) (s − 2)2  

 (vii) (x − 6)(x + 1)  

 (viii)  (x + 1)2  

 (ix) (a + 3)(a − 3)  

 (x) x(x + 6)

  4 (i) (2x + 1)(x + 2)  

 (ii) (2x − 1)(x − 2)  

 (iii) (5x + 1)(x + 2)  

 (iv) (5x − 1)(x − 2)  

 (v) 2(x + 3)(x + 4)  

 (vi) (2x + 7)(2x − 7)  

 (vii) (3x + 2)(2x − 3) 

 (viii)  (3x − 1)2  

 (ix) (t1 + t2)(t1 − t2) 

 (x) (2x − y)(x − 5y)

  5 (i) x = 8 or x = 3  

 (ii) x =  −8 or x =  −3  

 (iii) x = 2 or x = 9  

 (iv) x = 3 (repeated)  

 (v) x = −8 or x = 8

  6 (i) x = 23 or x = 1 

 (ii) x = –2
3 or x = −1  

 (iii) x = – 1
3

1
3= or x = 2 

 (iv) x = –
4
5

4
5or x =  

 (v) x = 2
3

 (repeated)

  7  (i) x = −4 or x = 5

 (ii) x = −3 or x = 43

 (iii) x = 2 (repeated)

 (iv) x = −3 or x = 52

 (v) x = −2 or x = 3

 (vi) x = 4 or x = 23
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P1    8 (i) x = ±1 or x = ±2

 (ii) x = ±1 or x = ±3

 (iii) x = ±2
3 or x = ±1

 (iv) x = ±1.5 or x = ±2

 (v) x = 0 or x = ±0.4

 (vi) x = 1 or x = 25

 (vii) x = 1 or x = 2

 (viii) x = 9 (Note: 4  means +2)

  9 (i) x = ±1

 (ii) x = ±2

 (iii) x = ±3

 (iv) x = ±2

 (v) x = ±1 or x = ±1.5

 (vi)  x = 1 or x = 23

 (vii) x = 4 or x = 16

 (viii) x = 14 or x = 9

10 x = ±3

11 (i) w(w + 30)  

 (ii)  80 m, 380 m  

12 (i) A = 2πrh + 2πr 2

 (ii) 3 cm  

 (iii) 5 cm  

13 (ii) 14 

 (iii) 45

14 x2 + (x + 1)2 = 292;
 20 cm, 21 cm, 29 cm

●?	 (Page 22)

Since x a+( )2

2

 = x2 + ax +  a
2

4
, it

follows that to make x2 + ax into a 

perfect square you must add a
2

4
 or

a
2

2( )  to it.

Exercise 1E (Page 24)

  1 (i)  (a) (x + 2)2 + 5  

  (b) x = − 2; (−2, 5)  

  (c) 

           
  (ii) (a) (x − 2)2 + 5  

  (b) x = 2; (2, 5)  

  (c) 

  (iii) (a) (x + 2)2 − 1  

  (b) x = −2; (−2, −1)  

  (c) 

    
   

 

  (iv) (a) (x − 2)2 − 1  

  (b) x = 2; (2, −1)  

  (c) 

        
     
 (v)  (a) (x + 3)2 − 10  

  (b) x = − 3; (−3, −10)  

  (c) 

               

   

 (vi)  (a) (x − 5)2 − 25  

  (b) x = 5; (5, −25)  

  (c) 

               

  (vii) (a) x +( ) +1
2

2
13

4    

  (b) x = ( )– ; – ,1
2

1
2

3
41  

  (c) 

 

x

y

(0, 9)

(–2, 5)

O

x

y

(0, 9)

(2, 5)

O

x

y

(0, 3)

(–2, –1)

O

x

y

(0, 3)

(2, –1)

O

x

y

(0, –1)

(–3, –10)

O

x

y

(5, –25)

O

x

y

(0, 2)

O

(–   , 1  )1–2
3–4
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P1   (viii)  (a) x – –1 91
2

1
4

2( )
  (b) x = ( )1 11

2
1
2

1
4; , –9  

  (c) 

           

  (ix) (a) x – 1
4

15
16

2( ) +  

  (b) x = ( )1
4

1
4

15
16; ,  

    (c) 

            

 

  (x) (a) (x + 0.05)2 + 0.0275  

  (b) x = −0.05; (−0.05, 0.0275)

  (c) 

      
  2 (i) x2 + 4x + 1  

 (ii) x2 + 8x + 12  

 (iii)  x2 − 2x + 3  

 (iv)  x2 − 20x + 112  

 (v)  x2 − x + 1  

 (vi)  x2 + 0.2x + 1

  3 (i)  2(x + 1)2 + 4  

 (ii) 3(x − 3)2 − 54 

 (iii)  −(x + 1)2 + 6  

 (iv)  −2(x + 12)2 − 11
2

  (v) 5(x − 1)2 + 2

  (vi) 4(x − 1
2)2 − 5

  (vii) −3(x + 2)2 + 12

  (viii) 8(x + 11
2)2 − 20

  4 (i) b = −6, c = 10

 (ii) b = 2, c = 0  

 (iii) b = −8, c = 16  

 (iv) b = 6, c =11

  5 (i)  x = 3 ± 6; x = 5.449
or x = 0.551 to 3 d.p.

 (ii)  x = 4 ± 17; x = 8.123
or x = −0.123 to 3 d.p.

 (iii)  x = 1.5 ± 1 25. ; x = 2.618
or x = 0.382 to 3 d.p.

 (iv)  x = 1.5 ± 1 75. ; x = 2.823
or x = 0.177 to 3 d.p.

 (v)  x = −0.4 ± 0 56. ; x = 0.348 
or x = −1.148 to 3 d.p.

Exercise 1F (Page 29)

  1 (i) x = −0.683 or x = −7.317

 (ii) No real roots

 (iii) x = 7.525 or x = −2.525

 (iv) No real roots

 (v) x = 0.869 or x = −1.535

 (vi) x = 3.464 or x = −3.464

  2 (i) −7, no real roots

 (ii) 25, two real roots 

 (iii) 9, two real roots

 (iv) −96, no real roots

 (v) 4, two real roots

 (vi) 0, one repeated root

  3  Discriminant = b2 + 4a2; a2 and 
b2 can never be negative so the 
discriminant is greater than 
zero for all values of a and b and 
hence the equation has  
real roots.

  4 (i) k = 1

 (ii) k = 3

 (iii) k = − 9
16

 (iv) k = ±8

 (v) k = 0 or k = −9

  5 (i) t = 1 and 2  

 (ii)  t = 3.065  

 (iii) 12.25 m

Exercise 1G (Page 33)

1  (i) x = 1, y = 2

 (ii) x = 0, y = 4

     (iii) x = 2, y = 1

    (iv) x = 1, y = 1

    (v) x = 3, y = 1

    (vi) x = 4, y = 0

    (vii) x = 1
2
, y = 1

    (viii) u = 5, v = −1

    (ix) l = −1, m = −2

  2 (i) 5p + 8h = 10, 10p + 6h = 10

 (ii)  Paperbacks 40c, 
hardbacks $1

  3 (i) p = a + 5, 8a + 9p = 164  

 (ii) Apples 7c, pears 12c

  4 (i) t1 + t2 = 4;  
  110t1 + 70t2 = 380  

  (ii) 275 km motorway, 
  105 km country roads

  5  (i) x = 3, y = 1 or x = 1, y = 3  

  (ii) x = 4, y = 2
  or x = −20, y = 14

  (iii) x = −3, y = −2
  or x = 11

2, y = 21
2

  (iv) k = −1, m = −7
  or k = 4, m = −2

  (v) t1 = −10, t2 = −5
  or t1 = 10, t2 = 5

  (vi) p = −3, q = −2

  (vii) k = −6, m = −4
  or k = 6, m = 4

  (viii) p1 = 1, p2 = 1

x

y

(0, –7)

O

(1   , –9   )1–2
1–4

(  ,    )1–4
15–16

x

y

O

(0, 1)

x

y

O

(0, 0.03)(–0.05, 0.0275)
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P1    6 (i) h + 4r = 100, 
  2πrh + 2πr 2 = 1400π

 (ii) 6000π or 
98000

27
π

 cm3

  7 (i) (3x + 2y)(2x + y) m2  

 (iii) x y= =1
2

1
4,

Exercise 1H (Page 37)

  1  (i) a  6

  (ii) b  2

  (iii) c  −2

  (iv) d  −4
3

  (v) e  7

  (vi) f  −1

  (vii) g  1.4

  (viii) h  0

  2  (i) 1  p  4

  (ii) p  1 or p  4

  (iii) −2  x  −1

  (iv) x  −2 or x  −1

  (v) y  −1 or y  3

  (vi) −4  z  5

  (vii) q  2

  (viii) y  −2 or y  4

  (ix) –2  x  
1
3

  (x) y  − 1
2 

or y  6

  (xi) 1  x  3

  (xii) y  − 1
2 or y  35 

  3 (i) k  98

 (ii) k  −4

 (iii) k  10 or k  −10

 (iv) k  0 or k  3

  4 (i) k  9

 (ii) k  −1
8

 (iii) −8  k  8

 (iv) 0  k  8

Chapter 2

Activity 2.1 (Page 40)

A: 1
2
; B: −1; C: 0; D: ∞

●?	 (Page 40)
No, the numerator and denominator 
of the gradient formula would have 
the same magnitude but the opposite 
sign, so m would be unchanged.

Activity 2.2 (Page 41)

An example of L2 is the line joining 

(4, 4) to (6, 0).

m1 =  12, m2 = −2 ⇒ m1m2 = −1.

Activity 2.3 (Page 41)

ABE  BCD

 AB = BC

AEB = BDC

BAE = CBD

⇒ Triangles ABE and BCD are 
congruent so BE = CD and AE = BD.

⇒ 

m m

m m

1 2

1 2 1

= =

= × =

BE
AE

BD
CD

BE
AE

BD
CD

; –

– –

Exercise 2A (Page 44) 

1  (i)	 (a) −2    

  (b) (1, −1)    

  (c) 20

  (d)  12 

 (ii)  (a) −3

  (b) 31
2

1
2,( )

  (c) 10

  (d)  1
3

 (iii) (a) 0

  (b) (0, 3)

  (c)  12

  (d) Infinite

 (iv) (a)  10
3
&

    (b) 3 31
2

, –( )  

  (c)  109 &

  (d) – 3
10 & 

 (v)  (a)  3
2

    (b) 3 11
2

,( )   

  (c)  13  

  (d) –2
3

 (vi) (a)  Infinite

    (b)  (1, 1)

    (c)  6

    (d)  0

  2 5

  3 1

  4 (i) AB: BC: CD: DA:1
2

3
2

1
2

3
2

, , ,

 (ii) Parallelogram

  (iii) 

      

                  

              

5 (i) 6  

 (ii) AB BC= =20 5,

 (iii) 5 square units  

y

x0 1 2 3 4 5 6

1
2
3
4 L1

L2

y

x0 2 4 6 8

2

4

6
D

A

B

C8
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P1   6 (i) 18  

 (ii)  −2  

 (iii) 0 or 8 

 (iv) 8

  7 (i) 

  (ii) AB = BC = 125   

 (iii)  – ,31
2

1
2( )

 (iv) 17.5 square units

  8 (i) 2y
x  

  (ii) (2x, 3y)

  (iii) 4 162 2x y+  

  9 (i) 

  (ii) gradient BC = gradient AD

    =  12
  (iii) (6, 3) 

10 (i) 1 or 5 

 (ii)  7  

 (iii) 9 

 (iv) 1 

11 Diagonals have gradients 2
3 and   

 – 3
2
 so are perpendicular.

 Mid-points of both diagonals are  
 (4, 4) so they bisect each other.  
 52 square units 

Exercise 2B (Page 49)

  1  (i) 

 (ii) 

  (iii)  

               
  (iv) 

               
  (v) 

  (vi) 

               
  (vii)  

               

  (viii) 

     
  (ix) 

               
  (x) 

          

 

  (xi) 

               
  (xii)  

               
  (xiii) 

               

  (xiv) 

y

x2 4 6 8–2–4
–2
0

2
4

C

A

B

x

y

0 2 4 6 8 10 12

2
4
6 C D

B

A

O

–2

x

y

y = –2

O x

y

x = 5

5

x

y y = 2x

O

x

y

y = –3x

O

x

y y = 3x + 5

5

–1 O2
3

x

y

y = x – 4

–4

O 4

x

y

y = x + 4
4

O–4

x

y

y =    x + 2

O–4

2

1
2

x

y y = 2x +

O–

1
2

1
2

1
4

x

y

y = –4x + 8
O

8

2

x

y y = 4x – 8

O

–8

2

x

y

y = –x + 1
O

1

1

x

y

O
–2–4

y = –    x – 21
2

x

y

O

–1

y = 1 – 2x

1
2
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P1   (xv)  

               
  (xvi)   

               
  (xvii)   

               

     

  (xviii) 

               
  (xix)   

               
  (xx)  

               

  2 (i) Perpendicular 

 (ii)  Neither 

 (iii) Perpendicular  

 (iv) Neither  

 (v) Neither 

 (vi) Perpendicular  

 (vii) Parallel 

 (viii) Parallel 

 (ix)  Perpendicular 

 (x) Neither 

 (xi) Perpendicular 

 (xii) Neither

●?	 (Page 51)
Take (x1, y1) to be (0, b) and (x2, y2) 
to be (a, 0). 

The formula gives y b
b

x
a

–
–

–
–0

0
0

=

which can be rearranged to give  
x
a

y
b

+ = 1.          

Exercise 2C (Page 54)

  1  (i) x = 7 

 (ii) y = 5 

 (iii)  y = 2x 

 (iv)  x + y = 2 

 (v)  x + 4y + 12 = 0 

 (vi)  y = x 

 (vii) x = −4 

 (viii) y = −4 

 (ix) x + 2y = 0 

 (x) x + 3y − 12 = 0

  2  (i) y = 2x + 3 

 (ii)  y = 3x 

 (iii)  2x + y + 3 = 0 

 (iv)  y = 3x −14 

 (v) 2x + 3y = 10 

 (vi) y = 2x − 3

  3 (i)  x + 3y = 0 

 (ii) x + 2y = 0 

 (iii)  x − 2y − 1 = 0 

 (iv) 2x + y − 2 = 0 

 (v) 3x − 2y −17 = 0 

 (vi)  x + 4y − 24 = 0

  4 (i) 3x − 4y = 0 

 (ii) y = x − 3

 (iii) x = 2 

 (iv) 3x + y −14 = 0 

 (v) x + 7y − 26 = 0 

 (vi) y = −2

 
 5 (i)   

          

 
 
 
 
 (ii)  AC: x + 3y − 12 = 0,   
  BC: 2x + y −14 = 0 

 (iii) AB BC= =20 20, ,  
  area = 10 square units 

 (iv) 10  

  6 (i) 

  

 

 

  (ii) y = x ; x + 2y − 6 = 0;   
  2x + y − 6 = 0

  7 (i)    

 

x

y

O

–3

2

3y – 2y = 6

x

y

O

2

5

2x + 5y = 10

x

y

O

3

2x + y – 3 = 0

11
2

x

y

O

2y = 5x – 4

–2

4
5

x

y

O
x + 3y – 6 = 0

2

6

x

y

O
y = 2 – x

2

2

O

A(0, 4)

C(6, 2)

B
x – 2y + 8 = 0

x

y

y

xO 2 4 6

2

4

6
A

B

0 2 4 6 8 10 12–2–4–6

2
4
6
8
10 C

B

A

D

x

y
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P1   (ii)  AB: BC: CD:

AD:

5
12

5
12

1
3

4
3

, –

–

, ,  

 (iii) AB = 13; BC = 13; CD = 40;   
  AD = 10 

 (iv) AB: 5x − 12y = 0;  
  BC: 5x + 12y − 120 = 0; 
  CD: x − 3y + 30 = 0;   
  AD: 4x + 3y = 0 

  (v) 90 square units

●?	 (Page 58)  

Attempting to solve the equations 
simultaneously gives 3 = 4 which is 
clearly false so there is no point of 
intersection. The lines are parallel.

Exercise 2D (Page 58)

  1 (i)  A(1, 1); B(5, 3); C(−1, 10) 

 (ii) BC  = AC = 85

  2 (i)   

     
 

 

  (ii) (−3, 3)

  (iii)  2x − y = 3; x − 2y = 0

  (iv) (−6, −3); (5, 7)

  3 (i)  y = 1
2 x + 1,  y = −2x + 6

 (ii)  Gradients = 1
2 and −2 ⇒ AC  

  and BD are perpendicular.  
  Intersection = (2, 2) = mid- 
  point of both AC and BD.

 (iii) AC = BD = 20

 (iv)  Square

  4 (i)    

               

 

  (ii) A: (4, 0),  B: (0, 11),  C: (2, 10)

  (iii) 11 square units

  (iv) (−2, 21)

  5 (i) (2, 4) 

 (ii) (0, 3)

  6 (i) – , – ,,1
2

3
4

1
2

3
4 parallelogram 

 (ii) 10 

 (iii) –
4
3, 4x + 3y = 20 

 (iv) (4.4, 0.8) 

 (v) 40 square units

  7 (i) −3

 (ii) x − 3y + 5 = 0

 (iii) x = 1 

 (iv) (1, 2)

 (vi) 3.75 square units

  8 (i) 1
2(−2 + 14) = 6

 (ii) gradient of AD = 
8
h

  gradient of CD = 8
12 – h

 (iii) x co-ordinate of D = 16

  x co-ordinate of B = −4

 (iv)  160 square units

  9 M(4, 6), A(−8, 0), C(16, 12)

10 (i) 3x + 2y = 31

 (ii) (7, 5)

11 (i) 2x + 3y = 20

 (ii)  C(10, 0), D(14, 6)

12 (6.2, 9.6)

13 (i) (4, 6)

 (ii) (6, 10)

 (iii) 40.9 units

14 B(6, 5), C(12, 8)

●?	 (Page 63)  

Even values of n: all values of y are  
positive; y axis is a line of symmetry.

Odd values of n: origin is the centre  
of rotational symmetry of order 2.

Exercise 2E (Page 68)

 1  

 2  

3   

 4 

 5  

O

9

2x – y = –9

x – 2y = –9

x

y

–9

4 1–2

–4 1–2

O

20

x + 2y = 22

5x + y = 20

x

y

4 22A

C
B
11

–4

y

x3

–1 2

y

x

20

41
2

–3

y

x51

–15

y

x3

–1 2

y

x

2
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P1 
 6  

 7 

 8  

 9 y = (x + 1)2(x − 2)2

●?	 (Page 68)

(x − a)3: crosses the x axis at (a, 0)
but is flat at that point.
(x − a)4: touches the x axis at (a, 0).

The same results hold for any odd or 
even n for (x − a)n.

Exercise 2F (Page 73)

  1 (2, 7)

  2 (i)  (3, 5); (−1, −3)

 (ii) 8.94

  3 (i) (1, 2); (−5, −10)

  4 (2, 1) and (12.5, −2.5); 11.1

  5 k = ±8

  6  1
4

  7  (i)  (2, 5), (2.5, 4)

 (ii) − 80   q  80

  8 3.75

  9  k  −4

10  k  2, k  −6

Chapter 3

●?	 (Page 75)
(i)  (a) Asian Savings

 (b) 80 000, 160 000, 320 000, …

 (c) Exponential geometric  
  sequence

 (d) The sequence could go 
  on but the family will not 
  live forever

(ii)  (a) Fish & Chips opening hours 

 (b) 10, 10, 10, 10, 12, …

 (c) They go in a cycle, repeating  
  every 7

 (d)  Go on forever (or a long 
time)

(iii) (a) Clock

 (b) 0, −3.5, −5, −3.5, 0, 3.5, …

 (c) A regular pattern, repeating  
  every 8

 (d) Forever

(iv) (a) Steps

 (b) 120, 140, 160, …

 (c)  Increasing by a fixed amount  
(arithmetic sequence)

 (d) The steps won’t go on  
  forever

Exercise 3A (Page 81)

  1 (i) Yes: d = 2, u7 = 39 

 (ii) No

 (iii) No

 (iv) Yes: d = 4, u7 = 27

 (v) Yes: d = −2, u7 = −4

  2 (i) 10

 (ii) 37 

  3 (i) 4  

 (ii) 34  

 4 (i) 5

 (ii) 850

  5 (i) 16, 18, 20

 (ii) 324   

  6 (i) 15

 (ii) 1170

  7 (i) First term 4, common  
  difference 6

 (ii) 12

  8 (i) 3

 (ii) 165

  9 (i) 5000 

 (ii) 5100 

  (iii) 10 100  

 (iv)  The 1st sum, 5000, and the  
2nd sum, 5100, add up to 
the third sum, 10 100. This is 
because the sum of the odd  
numbers plus the sum of the  
even numbers from 50 to 150 
is the same as the sum of all 
the numbers from 50 to 150.

10 (i) 22 000 

 (ii)  The sum becomes negative 
after the 31st term, i.e. from 
the 32nd term on.

11 (i) uk = 3k + 4; 23rd term

 (ii) n
2

(11 + 3n); 63 terms   

12 (i) $16 500

 (ii) 8   

13 (i) 49

  (ii) 254.8 km   

14 (i) 16

 (ii) 2.5 cm

15 (i) a = 10, d = 1.5 

 (ii) n = 27

16 8

y

x

–36

3
4

1
31

–2 4

64

y

x

–4 3

144

y

x
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P1 17 (i) 2

 (ii) 40

 (iii) n
2

(3n + 1)

 (iv) n
2

(9n + 1)

18 (i) a + 4d = 205; a + 18d = 373

 (ii) 12 tickets; 157

 (iii) 28 books

●?	 (Page 86)
For example, in column A enter 1 in 
cell A1 and fill down a series of step 
1; then in B1 enter 

=3^(A1-1)

then fill down column B. Look for 
the value 177 147 in column B and 
read off the value of n in column A.

An alternative approach is to use the 
IF function to find the correct value.

●?	 (Page 87)
3.7 × 1011 tonnes. Less than 1.8 × 109; 
perhaps 108 for China.

●?	 (Page 90)
The series does not converge so it 
does not have a sum to infinity.

Exercise 3B (Page 91)

  1 (i) Yes: r = 2, u7 = 320 

 (ii) No

 (iii) Yes: r = −1, u7 = 1

 (iv) Yes: r = 1, u7 = 5 

 (v) No

 (vi) Yes: r u= =1
2

3
327,

 

 (vii) No

  2 (i) 384

 (ii) 765

  3 (i) 4 

 (ii) 81 920

  4 (i) 9 

 (ii)  10th term

  5 (i) 9 

 (ii) 4088   

  6 (i) 6

 (ii) 267 (to 3 s.f.)

  7 (i) 2

 (ii) 3

 (iii) 3069 

  8 (i) 1
2

 

 (ii) 8 

  9 (i) 1
10

 

 (ii) 7
9

 

 (iii) S∞ = 7
11

 

10 (i) 0.9 

 (ii) 45th

 (iii) 1000 

 (iv) 44   

11 (i) 0.2 

 (ii) 1   

12 (i) r = 0.8; a = 25 

 (ii) a = 6; r = 4  

13 (i) 16
3

 (ii) (a) x = −8 or 2

  (b) r = – 1
2

 
or 2    

 (iii) (a) 256  

  (b) 1702
3

 

14 (i) r = 1
3

 (ii) 54 1
3

1
× ( )n–  

 (iii) 81 1 1
3

– ( )( )n
 

 (iv) 81  

 (v) 11 terms  

15 (i) 20, 10, 5, 2.5, 1.25

 (ii) 0, 10, 15, 17.5, 18.75 

 (iii)  First series geometric,  
common ratio 12 . Second 
sequence not geometric as 
there is no common ratio.

16 (i) 68th swing is the first less  
  than 1°

 (ii) 241° (to nearest degree)  

17 (i)  Height after nth impact = 

	 	

10 2
3

× ( )n  
       

 (ii) 59.0m (to 3 s.f.)   

19 (i) 2
3

 (ii) 243

 (iii) 270

20 (i) a = 117; (d = −21)

 (ii) a = 128; (r = 34)

21 (i) 
2
3

 (ii) 5150

22  (i)  a + 4d; a + 14d

 (iii) 2.5

Activity 3.1 (Page 98)

(i) n – 1
2

(ii)  n – 2
3

●?	 (Page 101)
1.61051. This is 1 + 5 × (0.1) + 
10 × (0.1)2 + 10 × (0.1)3 + 5 × (0.1)4 
+ 1 × (0.1)5 and 1, 5, 10, 10, 5, 1 are 
the binominal coefficients for n = 5.

Exercise 3C (Page 103)

  1 (i) x4 + 4x3 + 6x2 + 4x + 1

 (ii) 1 + 7x + 21x2 + 35x3 + 35x 4  
  + 21x5 + 7x6 + x7

 (iii) x5 + 10x4 + 40x3 + 80x2 +  
  80x + 32

 (iv) 64x6 + 192x5 + 240x4 +  
  160x3 + 60x2 + 12x + 1

 (v) 16x4 − 96x3 + 216x2 − 216x  
  + 81

 (vi) 8x3 + 36x2y + 54xy2 + 27y3

 (vii) x3 − 6x + 12
x  − 8

3x

 (viii) x4 + 8x + 24
2x
 + 32

5x
 + 16

8x

 (ix) 243x10 − 810x7 + 1080x4 −  

  720x + 240
2x

 − 32
5x
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P1    2 (i) 6 

  (ii) 15

  (iii) 20

  (iv) 15

  (v) 1 

  (vi) 220

  3 (i) 56

  (ii) 210

  (iii) 673 596

  (iv) −823 680

  (v) 13 440

  4 (i) 6x + 2x3

  5 16x4 − 64x2 + 96

  6 64 + 192kx + 240k2x2

  7 (i) 1 − 12x + 60x2

 (ii) −3136 and 16 128

  8 (i) 4096x6 − 6144kx3 + 3840k2

 (ii) ±1
4

  9  (i)  x12 − 6x9 + 15x6

 (ii)  − 20

10  (i)  x5 − 10x3 + 40x

 (ii)  150

11 (ii) x = 0, −1 and −2

12  n = 5, a = −1
2, b = 20

13  (i)  64 − 192x + 240x2

 (ii)  1.25

14  (i)  1 + 5ax + 10a2x2

 (ii)  a = 25

 (iii) −2.4

Chapter 4

●?	 (Page 108)
(i) (a) One-to-one

 (b)  One-to-many

 (c) Many-to-one

 (d)  Many-to-many

Exercise 4A (Page 110)

  1 (i) One-to-one, yes

 (ii) Many-to-one, yes

 (iii) Many-to-many, no

 (iv) One-to-many, no

 (v) Many-to-many, no

 (vi) One-to-one, yes

 (vii) Many-to-many, no

 (viii) Many-to-one, yes

  2 (i) (a) Examples: one  3,   
   word  4

  (b) Many-to-one

  (c) Words

   (ii) (a) Examples: 1  4, 
   2.1  8.4

  (b) One-to-one

  (c) +

    (iii) (a) Examples: 1  1, 
   6  4

  (b) Many-to-one

  (c) 
+

   (iv) (a)  Examples: 1  −3,
 −4  −13   

  (b) One-to-one

  (c) 

   (v) (a) Examples: 4  2, 
   9  3

  (b) One-to-one 

  (c) x  0

   (vi) (a) Examples: 36π  3,  
   9

2 π  1.5  

  (b) One-to-one  

  (c) +

   (vii) (a) Examples: 12π  3,  
   12π  12  

  (b) Many-to-many  

  (c) +

   (viii) (a)  Examples: 

1   3
2

3 4 24 3,

			

 
  

  (b) One-to-one 

  (c) +

   (ix) (a) Examples: 4  16, 
   −0.7  0.49

  (b) Many-to-one

  (c) 

3 (i) (a) −5

  (b) 9

  (c) −11

  (ii) (a) 3

  (b) 5

  (c)  10

  (iii) (a) 32

  (b)  82.4

  (c) 14

  (d) −40 

4 (i) f(x)  2

 (ii) 0  f(θ)  1

 (iii) y ∈ {2, 3, 6, 11, 18}

 (iv) y ∈ + 

 (v)  

 (vi) {1
2, 1, 2, 4}  

 (vii) 0  y  1   

 (viii) 

 (ix) 0  f(x)  1

 (x) f(x)  3

5  For f, every value of x  
(including x = 3) gives a unique 
output, whereas g(2) can equal 
either 4 or 6.

●?	 (Page 115)
(i) (a)  Function with an inverse 

function.

 (b) f: C  9
5

C + 32

  f−1: F  5
9

(F − 32)

(ii)  (a)  Function but no inverse 
function since one   
grade corresponds to several 
marks.

(iii) (a)  Function with an inverse 
function.

 (b)  1 light year ≈ 6 × 1012 miles or 
almost 1016 metres.
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P1   f: x  1016x (approx.)

  f −1: x  10 −16x (approx.)

(iv) (a)  Function but no inverse 
function since fares are 
banded.

Activity 4.1 (Page 117)

(i)

	 	 	

f(x) = x2; f −1(x) = x

(ii)

	 	 	

f(x) = 2x ; f −1(x) = 12x

(iii)

	 	 	

f(x) = x  + 2; f −1(x) = x − 2

(iv)

	 	 	
 

 f(x) = x3 + 2; f−1(x) = 3 2x –

y = f(x) and y = f −1(x) appear to  
be reflections of each other in  
y = x.

Exercise 4B (Page 120)

  1 (i) 8x3

 (ii) 2x3

 (iii)  (x + 2)3 

 (iv) x3 + 2

 (v)  8(x + 2)3 

 (vi) 2(x3 + 2)

 (vii) 4x  

 (viii) [(x + 2)3 + 2]3 

 (ix) x + 4

  2 (i) f−1(x) = x – 7
2

 

 (ii) f−1(x) = 4 − x

 (iii) f−1(x) = 2 4x
x
–  

 (iv) f−1(x) = x + 3, x  −3

  3 (i), (ii) 

	 	 	 	

                                                                                                                                                      

  4 (i) fg

 (ii) g2

 (iii) fg2

 (iv) gf

  5 (i) x

  (ii) 1
x

  (iii) 1
x

 

  (iv) 1
x

 

  6 (i) a = 3

 (ii)

	 	 	 	

 (iii) f(x)  3

 (iv)  Function f is not one-to-one 
when domain is .   
Inverse  exists for function 
with domain x  −2.

  7 f−1: x  x – ,3
4

3  x ∈ . 

  The graphs are reflections of 
each other in the line y = x.

  8 (i)  a = 2, b = −5 

 (ii) Translation –
–

2
5







	 	

 (iii) y  −5

 (iv) c = −2

 (v)

	 	

x

y
y = f(x)

y = f–1(x)

O

x

y

O

y = f(x)

y = f–1(x)

x

y

2

2

y = f(x)

y = f–1(x)

O

x

y

y = f(x)

y = f–1(x)

O

2

2

y

O x

y = f(x)

y = f–1(x)

y = x

(3, 2)

(2, 3)

y

Ox = –2

(–2, 3)

7

x

x

y

(–2, –5)

O

y = g(x)

x

y

O

y = g(x)

y = x

y = g–1(x)

(–2, –5)

(–5, –2)
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P1  9 (i)  f(x)  2

 (ii)  k = 13

10 (i)  k = 4 or −8; x = 1 or −5
 (ii)  7

 (iii) 9 2– x
x

, x ≠ 0

11 (i)  2(x − 2)2 + 3

 (ii)  f(x)  3

 (iii) f is not one-to-one 

 (iv) 2 

 (v)  2 − x – 3
2

, g−1(x)  2

12 (i)   

 (ii)  −9x2 + 30x − 16

 (iii) 9 − (x − 3)2

 (iv) 3 + 9 – x

Chapter 5

Activity 5.1 (Page 124)

See text that follows.

Activity 5.2 (Page 126)

6.1; 6.01; 6.001

Activity 5.3 (Page 127)

(i)  2    

(ii) −4     

(iii) 8

Gradient is twice the x co-ordinate.

Exercise 5A (Page 129)

  2 4x3   
  

3
f(x) f´(x)

x2 2x

x3 3x2

x4 4x3

x5 5x4

x6 6x5



xn nxn−1

●?	 (Page 129)
When	f(x)	=	xn,	then

 f(x + h) 
 = (x + h)n

 =  xn + nhxn−1 + terms of order h2 
and higher powers of h.

The gradient of the chord 

 = 
f f( ) – ( )x h x

h
+

	 =		nxn−1 	+	terms	of	order	h	and		
higher	powers	of	h.

As h tends to zero, the gradient 
tends to nxn−1 .

Hence the gradient of the tangent is 
nxn−1 .

Activity 5.4 (Page 130)

   

When x = 0, all gradients = 0

When x = 1, all gradients are equal.

i.e. for any x value they all have the 
same gradient.

Activity 5.5 (Page 130)

y = x3 + c ⇒ d
d

y
x

	

= 3x2,  i.e. gradient 

depends only on the x co-ordinate.

Exercise 5B (Page 133)

  1 5x4

  2 8x  

  3 6x2  

  4 11x10  

  5 40x9  

  6 15x4  

  7 0  

  8 7  

  9 6x2 + 15x4  

10 7x6 − 4x3  

11 2x  

12 3x2 + 6x + 3   

13 3x2  

14 x + 1  

15 6x + 6  

16 8πr  

17 4πr2  

18 
1
2t   

19 2π  

20 3l2

21  32
1
2x

22 − 1
2x

23 
1

2 x

24 1
2

3
2x

25 − 2
3x

26 − 15
4x

27 − −x
3
2

28  2 4
3
2

x
x+ −

29 3
2

3
2

1
2

5
2x x− −

30 5
3

2
3

2
3

5
3x x+ −

x

y

O–2

–2

y = f(x)

y = x

y = f–1(x)

2
3

2
3

y

x2

y = x3 + 2 

y = x3 – 1

y = x3 + 1 
y = x3

1
2

–1
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P1 31 8x − 1

32 4x + 5

33 1

34 16x3 − 10x

35 3
2

1
2x

36 
1

x

37 9
2

x  − 1

x

38 
3
4x2 − 12x + 4

39 3
2

x

40 5
4

3
2

3
2 2x x

x
− −

Exercise 5C (Page 136)

1 (i) (a) −2x −3

  (b) −128

 (ii) (a)  −x −2 − 4x −5

  (b) 3

 (iii) (a) −12x −4 − 10x −6 

  (b) −22

 (iv) (a) 12x3 + 24x −4 

  (b) 97.5

  (v) (a) 1

2 x
 + 3 

    (b) 31
4

  (vi) (a) −2x
−3

2

  (b) − 2
27

  2 (i) 

              

  (ii) (−2, 0), (2, 0)  

 (iii)  d
d

y
x

 = 2x  

 (iv) At (−2, 0), d
d

y
x

 = −4; 

  at (2, 0), d
d

y
x

 = 4

  3 (i) 

              

 (ii) d
d

y
x

 = 2x − 6  

 (iii) At (3, −9), d
d

y
x

 = 0  

 (iv) Tangent is horizontal: curve  
  at a minimum.

  4 (i)  

               

 (iii)  d
d

y
x

 = −2x : at (−1, 3), d
d

y
x

 = 2

 (iv)  Yes: the line and the curve  
both pass through (−1, 3) 
and they have the same 
gradient at that point.  

 (v) Yes, by symmetry.

  5 (i) 

             

 

 (ii) d
d

y
x

 = 3x2 − 12x + 11  

 (iii) x = 1: d
d

y
x

 = 2; x = 2: d
d

y
x

 = −1;

  x = 3: d
d

y
x

 = 2

  The tangents at (1, 0) and  
  (3, 0) are therefore parallel.

  6 (i) 

               

  (ii) d
d

y
x

 = 2x + 3  

 (iii) (1, 3)  

 (iv)  No, since the line does not 
go through (1, 3).

  7 (i) 

               

  (ii) d
d

y
x

 = 2x   

 (iii) At (2, −5), d
d

y
x

 = 4;  

  at (−2, −5), d
d

y
x

 = −4  

 (iv) At (2, 5), d
d

y
x

 = −4; 

  at (−2, 5), d
d

y
x

 = 4  

 (v) A rhombus

  8 (i) 

               

 (ii) 4 

 (iv) y = x2 + c, c ∈ 

  9 (i)  4a + b − 5 = 0  

 (ii) 12a + b = 21  

 (iii) a = 2 and b = −3

y

–4

–2 2O x

y

–9

3 6O x

y

2O

5

x

4

–2

y

O 1 x

–6

2 3

y

O

–1
x

3–2–

y

3–3 O

–9

9

x

y

O
–1

3

x
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P1  10 (i) d
d

y
x

 = −7
20
x  

 (ii) 0.8225 and −0.8225  

 (iii) x = 10
7

11 (i)  

  

  (ii)  (− 12, 0)

 (iii) − 1
2x

  (iv) −4

12 (i) − 8
3x
 + 1

  (iii) 2  

  (v) 0  

  (vi) There is a minimum point at  
  (2, 3)

13 (i) y

x
y = –16x + 13

y =     + 1

O

1
x2

  (iii) − 2
3x
; − 16

  (iv) The line y = −16x + 13 is a  
  tangent to the curve

  y = 1
2x
 + 1 at (0.5, 5)

14  (i)

               

  (ii) 
d
d

y
x

x= −1
2

1
2

  (iii) 
1
6

15  (i)

               

  (ii) 
d
d

y
x x
= − 8

3

  (iii) 1

  (iv)  –1; the curve is symmetrical 
about the y axis

16  (i) 
d
d

y
x x
= +1

2
2

2

  (ii)  x = 2, gradient = 1

17  4

18 
3
8

Exercise 5D (Page 142)

  1 (i) d
d

y
x

 = 6 − 2x   

 (ii) 4 

 (iii) y = 4x + 1

  2 (i) 

               

 

  (ii) 
d
d

y
x

 = 4 − 2x  

  (iii) 2  

  (iv)  y = 2x + 1

  3 (i) d
d

y
x

  = 3x2 − 8x

  (ii) −4

 (iii) y = −4x

  (iv) (0, 0)

  4 (i) 

               

 (ii) At (−1, 5), d
d

y
x

 = 2; 

  at (1, 5), d
d

y
x

 = −2

  (iii) y = 2x + 7, y = −2x + 7

  (iv) (0, 7)

  5 (i) 

               

 (iii) y = 4x is the tangent to the  
  curve at (2, 8).

   6 (i) y = 6x + 28  

 (ii) (3, 45) 

 (iii)  6y = −x + 273

  7  (i) d
d

y
x

 = 3x2 − 8x + 5  

 (ii) 4 

 (iii) 8 

 (iv) y = 8x − 20  

 (v) 8y = −x + 35

 (vi) x = 0 or x = 83

  8 (i)  

               

 
 

  A(1, 0); B(2, 0) or vice versa

y

x

2

O

O

4

2

x

y

105

O

10

5

x

y

3–3

y

4O

4

x

y

O

6

x

y

2

8

x

4

O

y

1 2 x

2

O
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P1   (ii) At (1, 0), d
d

y
x

 = −1 

  At (2, 0), d
d

y
x

 = 1

     (iii)  At (1, 0), 
     tangent is y = −x + 1, 

normal is y = x −1
   At (2, 0),  
    tangent is y = x − 2, 

normal is y = −x + 2

  (iv) A square

  9 (i) (1, −7) and (4, −4)

  (ii)   
d
d

y
x

 = 4x − 9. At (1, −7), 

   tangent is y = −5x − 2; 
at (4, −4), tangent is  
y = 7x − 32.

  (iii) (2.5, −14.5)  

 (iv) No

10 (i)  y = 12 x + 12

  (ii)  y = 3 − 2x

  (iii) 21
2 units

11 (i) y = − 14 x + 1

  (ii)  y = 4x − 71
2

  (iii) 81
2 square units

12 (i) 
1

2 x

  (ii) 
1

16
3
4

, −( )
  (iii) No. Point 1

16
3
4

, −( )does not  

  lie on the line y = 2x − 1.

13 (i) y = 5x − 7
4

 (ii) 20y + 4x + 9 = 0

 (iii) 13
20  square units

14 27.4 units

15 (i) 2y = x + 6

 (ii) 9 square units

16 (i) 3 + 2
3x

 (ii) 5

 (iii) y = 5x − 3

17 (i) 2x − 1
2x

 (ii) 1

 (iv) (–2.4, 5.4), (0.4, 2.6)

18 262
3 units

19 (i)  (a) x = 11
2 and x = 3

  (b) y = 2x – 2

  (c) 36.9°

 (ii)  k  3.875

20 (ii) (–8, 6)

 (iii) 11.2 units 

Activity 5.6 (Page 146)

(i) 3

(ii) 0

(iii)  (0, 0) maximum; minima to left 
and right of this.

(iv) No

(v) No 

(vi) About −2.5

Exercise 5E (Page 151)

  1 (i) 
d
d

y
x

 = 2x + 8; 

  d
d

y
x

 = 0 when x = −4

 (ii) Minimum

  (iv)  

               

  2 (i) 
d
d

y
x

 = 2x + 5; 

  d
d

y
x

 = 0 when x = –21
2

 (ii) Minimum  

 (iii) y = –41
4

  (iv)  

               

  3 (i) d
d

y
x

 = 3x2 − 12; 

  d
d

y
x

 = 0 when x = −2 or 2  

 (ii) Minimum at x = 2,   
  maximum at x = −2  

 (iii) When x = −2, y = 18;   
  when x = 2, y = −14  

 (iv)   

    

4  (i) A maximum at (0, 0),  
  a minimum at (4, −32)

  (ii)  

               

  5 d
d

y
x

 = 3x2 − 1

  6  (i) d
d

y
x

 = 3x2 + 4 

O
–1 1 2
–5

5

10

15

x

y

x

y

O

–3
–4

13

x

y

2

–4 1–4

–2 1–2 O

x

y

2

18

–14

–2 2O

x

y

O 4

–32

6
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P1    7 (i) d
d

y
x

 = 3(x + 3)(x − 1)  

 (ii)  x = −3 or 1  

  (v)            

  8 (i) d
d

y
x

 = −3(x + 1)(x − 3)

  (ii) Minimum when x = −1,  
  maximum when x = 3

  (iii) When x = −1, y = −5;   
  when x = 3, y = 27

  (iv)  

               

  9 (i) Maximum at – , ,2
3

13
274( )

  minimum at (2, −5)

  (ii)  

               

10 (i) Maximum at (0, 300),  
  minimum at (3, 165),  
  minimum at (−6, −564) 

  (ii)  

         

11 (i) d
d

y
x

	

= 3(x2 + 1)  

 (ii)  There are no stationary 
points.

  (iii) 

x 		−3 		−2 	−1 0 1 		2 		3

y −36 −14 	−4 0 4 14 36

 (iv)  

               

12 (i) d
d

y
x

	

= 6x2 + 6x − 72 

 (ii) y = 18  

 (iii) d
d

y
x

	

= 48; y = 48x − 174 

 (iv) (−4, 338) and (3, −5)

13 (i) (1
2, 4) and (−1

2, −4)
 (ii) −1

2  x  12

14 (i) 
d
d

y
x

 = (2x − 3)2 − 4

 (ii) 2y + 9 = 10x

 (iii) x  21
2 or x  12

15 (ii) x  1.5

 (iii) (−1, 8) and (2, 2)

 (iv) 33
4

16 (i) x = 11
2 and x = 2 

 (ii) (2, 1) is the stationary point

Activity 5.7 (Page 155)

At P (max.) the gradient of  d
d

y
x

 is
negative.

At Q (min.) the gradient of  d
d

y
x

 is 
positive.

Exercise 5F (Page 158)

  1 (i) d
d

y
x

	

= 3x 2;  d
d

2

2
y

x
	

= 6x

 (ii) d
d

y
x

	

= 5x 4; 
d
d

2

2
y

x
	

= 20x3

 (iii) 
d
d

y
x

	

= 8x ; 
d
d

2

2
y

x
 = 8

 (iv) 
d
d

y
x

	

= −2x −3; 
d
d

2

2
y

x
 = 6x −4

 (v) 
d
d

d

d

y
x

x
y

x
x= = −3

2
3
4

1
2

1
2

2

2
;

	
 (vi)   

d
d

y
x

	

= 4x3
 + 6

4x
; 

  
d
d

2

2
y

x
 = 12x2 − 24

5x

  2 (i) (−1, 3), minimum

 (ii) (3, 9), maximum  

 (iii) (−1, 2), maximum and  
  (1, −2), minimum 

  (iv) (0, 0), maximum and   
  (1, −1), minimum

 (v) (−1, 2), minimum;   

  ( – 3
4 , 2.02), maximum;

  (1, −2), minimum

x

y

O 13

33

1

x

y

O 3–1

27

–5

x

y

O 2

–5

– 2–3

413–27

x

y

O 3–6

–564

300

165

x

y

O

O x

y

O x

dy
dx

O x

gradient
of dy

dx

Q

P
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P1   (vi)  (1, 2), minimum and

(−1, −2), maximum

  (vii)  ( 12, 12) , minimum

  (viii) ( 2, 8 2) , minimum and

  (− 2, −8 2), maximum

 (ix) (16, 32), maximum

  3 (i) 4x (x + 2)(x − 2) 

 (ii) 4(3x2 − 4)

 (iii) (−2, −16), minimum;   
  (0, 0), maximum;                      
  (2, −16), minimum

 (iv)  

      

  4 (i) 
d
d

y
x

	

= (3x − 7)(x − 1)

  (ii) Maximum at (1, 0);  

  minimum at 2 11
3

5
27, –( )

  (iii)  

               

  5 (i) d
d

y
x

	

= 4x(x − 1)(x − 2)  

  (ii)  Minimum at (0, 0);   
  maximum at (1, 1);   
  minimum at (2, 0)

  (iii)  

               

6 (i) p + q = −1

  (ii) 3p + 2q = 0 

 (iii) p = 2 and q = −3 

  7 (i) f '(x) = 8x − 1
2x
; f "(x) = 8 + 2

3x

  (ii) (1
2, 3), minimum

  8 (i) 1 − 2

x
; x −3

2

  (ii) (4, −4), minimum 

  9 2

10  (i) 0, 10

  (ii) −58.8

Exercise 5G (Page 162)

  1 (i) y = 60 − x  

 (ii) A = 60x − x2  

 (iii) d
d

A
x

	

= 60 − 2x;

  d
d

2

2
A

x
	

= −2

  Dimensions 30 m by 30 m,  
  area 900 m2 

  2 (i) V = 4x3 − 48x2 + 144x  

 (ii) d
d
V
x

	

= 12x2 − 96x + 144;

  d
d

2

2
V
x  

= 24x − 96

  3 (i) y = 8 − x  

 (ii) S = 2x2 − 16x +  64 

 (iii) 32  

  4 (i)  2x + y = 80  

 (ii)  A = 80x − 2x2  

 (iii) x = 20, y = 40

  5 (i) x(1 − 2x)  

 (ii)  V = x2 − 2x3  

 (iii) d
d
V
x

	

= 2x − 6x 2;  

  d
d

2

2
V
x  

= 2 − 12x

 (iv) All dimensions 1
3 m (a cube); 

  volume 1
27 m3

  6 (i)  (a) (4 − 2x) cm  

   (b) (16 − 16x + 4x2) cm2  

 (iii) x = 1.143  

 (iv) A = 6.857

  7  (i)  P = 2πr, r = 15 2– x
π  

 

 (iii) x = 30
4 + π

 cm: 

  lengths  16.8 cm and 
  13.2 cm

  8 (i) h = 125
r

	− r 

 (ii) V = 125πr − πr 3  

 (iii) d
d
V
r

	= 125π − 3πr2;

  d
d

2

2
V
x

	= −6πr

 (iv) r = 6.45 cm; h = 12.9 cm  
  (to 3 s.f.)

  9 (i) Area = xy = 18

 (ii) T = 2x + y

 (iv) d
d
T
x

 = 2 − 18
2x
; d

d

2

2
T

x
 = 36

3x
 (v) x = 3 and y = 6

10 (i)  V = x2y

 (ii) A = x2 + 4xy 

 (iii) A = x2 + 2x

 (iv) d
d

A
x

 = 2x − 2
2x
; d

2

2
A

xd
 = 2 + 4

3x

 (v) x = 1 and y = 12

11 (i) h = 324
2x

 (iii)  d
d

A
x

 = 12x − 2592
2x

; stationary

point when x = 6 and h = 9

 (iv)  Minimum area = 648	cm2

Dimensions:  
6	cm × 18	cm × 9	cm

12 (i) y = 24
x

 (ii) A = 3x + 30 + 48
x

 (iii) A = 54	m2

13 (i) h = 12 − 2r

 (ii) 64π or 201 cm3

●?	 (Page 167)

d
d
V
h

	is the rate of change of the 

volume with respect to the height of 
the sand.

x

y

O 2–2

–16

x

y

O

–3

1 3

x

y

O 21

1
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P1  d
d

h
t

	is the rate of change of the height 

of the sand with respect to time.

d
d

d
d

V
h

h
t

× 	is the rate of change of the 

volume with respect to time.

	●		 (Page 169)
   y = (x2 − 2)4 

 =  (x2)4 + 4(x2)3(−2) + 6(x2)2(−2)2 
+ 4(x2)(−2)3 + (−2)4

 = x8 − 8x6 + 24x4 − 32x2 + 16

	

d
d

y
x

	= 8x7 − 48x5 + 96x3 − 64x

 = 8x(x6 − 6x4 + 12x2 − 8)

 = 8x(x2 − 2)(x4 − 4x2 + 4)

 = 8x(x2 − 2)(x2 − 2)2

 = 8x(x2 − 2)3

Exercise 5H (Page 171)

  1 (i)  3(x + 2)2 

 (ii) 8(2x + 3)3

 (iii) 6x(x 2 − 5)2 

 (iv) 15x 2(x 3 + 4)4 

 (v) −3(3x + 2)−2

 (vi) 
–

( – )
6

32 4
x

x
	

 (vii) 3x(x 2 − 1)
1
2

 (viii)  3 1 1 1
2

2x x
x

+( ) ( )– 	

 (ix) 
2 1

3

x
x –( )

  2 (i) 9(3x − 5)2

 (ii) y = 9x − 17

  3 (i) 8(2x − 1)3 

 (ii) (1
2
, 0), minimum

 (iii) 

	 	 	

  4 (i) 4(2x − 1)(x2 − x − 2)3 

 (ii) (−1, 0), minimum;  

  (1
2

6561
256

, ), maximum; 

  (2, 0), minimum

  (iii)  

	 	 	

           

       

                                                                                                                                                      

  5 4 cm2 s −1

  6 −0.015 Ns −1

  7  π
10

	m2
 day −1 

 (= 0.314 m2
 day−1 to 3 s.f.)

Chapter 6

●?	 (Page 173)
The gradient depends only on the        
x co-ordinate. This is the same for 
all four curves so at points with the 
same x co-ordinate the tangents 
are parallel.

Exercise 6A (Page 177)

  1 (i) y = 2x3 + 5x + c  

 (ii) y = 2x3 + 5x + 2   

  2 (i) y = 2x2 + 3      

 (ii) 5

  3 (i) y = 2x3 − 6  

  4 (ii)  t = 4. Only 4 is applicable 
here.

  5 (i) y = 5x + c  

 (ii) y = 5x + 3 

  (iii) 

  

  6 (i) x = 1 (minimum) and  
  x = −1 (maximum)

  (ii) y = x3 − 3x + 3 

  (iii) 

  

  7 (i) y = x2 − 6x + 9

  (ii) The curve passes through 
  (1, 4)

  

       

  8 (i) y = x3 − x2 − x + 1  

 (ii) – ,1
3

5
27

1( )	and (1, 0)

 (iii) 

  

  9 (i) y = x3 − 4x2 + 5x + 3  

 (ii) max (1, 5), min 1 42
3

23
27,( ) 	

 (iii) 423
27

  k  5  

 (iv) 1  x  12
3 ; x = 11

3

10 y = 23x
3
2  + 2

11 y = − 2x  − 3x + 17

12 y = 23
x

3
2 − 1

x
 + 51

3

13 y = x3 + 5x + 2

14 (i) y = 2x x  − 9x + 20

 (ii) x = 9, minimum
x

y

O 1–2

1

x

y

O 1–2

16

–1 2

x

y
y = 5x + 3

O

3

3–5–

x

y

O

3

1

1–1

5

x

y

O 3

9

O x

y

(1, 0)

(0, 1)

1–3
5–27(–   , 1   )
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P1 15 y = 6 x  − x
2

2  + 2

16 (i) y = 4x − 12x2 + 3

 (ii) x + 2y = 20

 (iii) (7, 6.5)

Activity 6.1 (Page 183)

The bounds converge on the value  

A = 451
3

.

Activity 6.2 (Page 187)

(i) Area =  12[3 + (b + 3)]b −  12[3 + (a + 3)]a

  = 12[6b + b2 − 6a − a2]

(ii)  = [b2

2
 + 3b] − [a2

2
 + 3a]

  = [x2

2
 + 3x]b

a

(iii) ∫b

a
(x + 3) dx = [x2

2
 + 3x]b

a

Exercise 6B (Page 189)

  1 (i)  x3 + c  

  (ii) x5 + x7 + c  

 (iii) 2x3 + 5x + c  

 (iv) 
x x x x c

4 3 2

4 3 2
+ + + +

 (v) x11 + x10 + c 

 (vi) x3 + x2 + x + c  

 (vii) x3

3
 + 5x + c  

 (viii) 5x + c  

 (ix) 2x3 + 2x2 + c 

 (x) x5

5
 + x3 + x2 + x + c

  2 (i)  − 10
3  x−3 + c

  (ii) x2 + x−3 + c

 (iii) 2x  + x
4

4  − 52x−2 + c

 (iv)  2x3 + 7x−1 + c

 (v) 4x
5
4 + c

 (vi) − 1
3 3x

 + c

 (vii) 2
3x x  + c

 (viii) 2
5

5x  + 4
x

 + c

  3 (i) 3  

  (ii) 9  

  (iii) 27  

  (iv) 12 

  (v) 12  

  (vi) 15  

  (vii) 114  

  (viii)  1
6

 

  (ix) 2 9
20

 

  (x) 0  

  (xi) –1053
4

 

  (xii) 5

  4 (i) 21
4

  (ii) 3
4

  (iii) 56

  (iv) −22
3

  (v) 175
8

  (vi) 102
3

  5 (i) A: (2, 4);  B: (3, 6)  

 (ii) 5  

 (iv) In this case the area is not a  
  trapezium since the top is  
  curved. 
  6 (i) 

  

 (ii) 21
3

 

 7 (i) 

  

 (ii) −2  x  2

  (iii) 102
3

 

  8 (i) 

  

 (ii) 22
3

 square units

  9 211
3 square units

10 (i)   

  

  
 (ii) 182

3
 square units

11 (i) 

  

 

  (ii)  y = x2

 (iii) y = x2: area = 
1
3 square units

  y = x3: area = 14 square units

  (iv)  Expect ∫2

1
x3 dx  ∫2

1
x2 dx,

  since the curve y = x3 is  
  above the curve y = x2  
  between 1 and 2.

  Confirmation: ∫2

1
x3 dx = 33

4

  and ∫2

1
x2 dx = 21

3

12 (i) 

  
  
 
 
 

O 1 2 x

y

y

2–2

4

xO

4

2–1 O x

y

5

2O x

y

1–1 3 4

O x

y y = x3 y = x2

y

1 2–1 –1
xO
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P1   (ii)  11
3

 (iii)  

  

 (iv) 11
3

  (v) The answers are the same,  
  since the second area is a  
  translation of the first.

13 (i)  

  

 
 

 (ii)  24 square units

14 (i)  

  

  (ii) 71
3

 square units

  (iii) 71
3, by symmetry

  (iv) 71
3

15 (i)  

  

  (ii)  ∫4

0
(x2 − 2x + 1) dx larger, 

as area between 3 and 4 is 
larger than area between  
−1 and 0.

 (iii) ∫3

−1
(x2 − 2x + 1) dx = 51

3;

  ∫4

0
(x2 − 2x + 1) dx = 91

3

16 (i) and (ii)    

 

  (iii) (a) 1
4
 

  (b)  21
4

 (iv)  0.140 625. The maximum 
lies before x = 1.5.

17 16 square units

18 (i) 14.4 units

  (ii) 8 square units

19 (ii) 7.2 square units

20 (i) y = − 8
2x
 + 12

  (ii) x + 2y = 22

  (iii) 8 square units

21 (i) 2 − 16
3x
, 48

4x

  (ii) (2, 6), minimum

  (iv) 7 square units

Exercise 6C (Page 196)

  1  (i) 

  

 

  

201
4 square units

  (ii) 

 

  

  9 square units

  (iii) 

  

  
  21

6  square units

    (iv)   

      
   

  1 square units

    (v)  

 

	
	 	

4
15 square units

    (vi)  

 

 
 

	 	

2 1
16  square units

y

1 2 3
–1

xO

O–1 2 x

y

O 2 3 x

y

1

O 1 x

y

1

O

–6

1 2 3 4 x

(a)

(b)

y

x

y

O
–3

y = x3 

x

y

O

y = x2 – 4 

–1–2 2

–4

x

y

O
–1

y = x5 – 2 

–2

y

x
1

O

y = 3x2 – 4x

x

y

O–1 1

y = x4 – x2 

x

y

O
–1

y = 4x3 – 3x2 

0.75

0.5



C
h

a
p

te
r 6

301

P1   (vii)  

 

 
 

	 	

1
6  square units

    (viii) 

 

 
 

	 	

81
6  square units

    (ix) 

 

 
 

	
	
	 	

11 1
12  square units

  (x)  

  

   
  81

6  square units

2 (i) 
d
d

y
x

	

= 20x3 − 5x4; (0, 0) 

  and (4, 256)

  (ii) 5205
6  square units 

 (iii) 0. Equal areas above and 
  below the x axis.

3 (i)  (a) 4

  (b) −2.5

  (ii) 6.5 square units

4 (i)  (a) −6.4 

  (b) 38.8 

  (ii) 45.2 square units

Exercise 6D (Page 198)

  1 (i) A: (−3, 9);  B: (3, 9) 

  2 (i)  

  

 

 

 
 
 

  (ii) (−1, 4) and (1, 4)

  (iii) 22
3  square units

  3 (i)  

  

 

  (ii) (−2, −8), (0, 0) and (2, 8)

  (iii) 8 square units

  4 (i) 
  
 
 
 
 
 
 
 
 
 
 
 
  (ii) (0, 0) and (2, 4)  

 (iii) 22
3  square units

  5 (i) 

 

 

 

  (ii) 102
3 square units

 (iii) 102
3 square units

 (iv) 211
3 square units

  6 (i)  

 

 

 

  (ii) (1, −5) and (5, −5)  

 (iii) 102
3 square units

  7 (i)  

 
 

 

 

 

  (ii) (−1, −5), (3, 3)  

 (iii) 102
3  square units

  8 72 square units

  9 11
3  square units

10 (i)    

   

  (ii) 8 square units (4 each)

x

y

O–1

y = x5 – x3 

1

x

y

O–1

y = x2 – x – 2 

1–2 2 3

y

O–1

y = x3 + x2 – 2x 

1–2 2 x–3

y

O

y = x3 + x2 

x–1 1–2 2

y

y = x2 + 3

y = 5 – x2

5

3

O x

y y = x3
y = 4x

xO

y y = x2

y = 4x – x2

xO 4

y

xO

y = 4

y = x2

y = 8 – x2

y

xO 6

y = x2 – 6x

y = – 5

y

xO 4

y = 2x –3

y = x(4 – x)

y

xO

y = x3 + 1

y = 4x + 1
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P1  11  4.5 square units

12 (i) 
d
d

y
x

 = 6x − 6x2 − 4x3  

 (ii) 4x + y − 4 = 0  

 (iv) 8.1 square units

13 (i) 
d
d

y
x

 = 4 − 3x2 ; 8x + y − 16 = 0  

 (ii) (−4, 48)  

 (iii) 108 square units

14 102
3 square units

15 (i) A: (1, 4); B: (3, 0)

 (ii) 3y = x + 4

 (iii) 17
12 square units

Exercise 6E (Page 203)

  1  6 square units

  2  62
3  square units

  3  4 square units

      

   
 

  4  82
3  square units

 

 

  5  61
5  square units

 

 
 
 
 

  6  20 square units

Activity 6.3 (Page 203)

  (i)  (a) 4(x − 2)3

    (b) 14(2x + 5)6

    (c) –
( – )

6
2 1 4x

    (d) –

–

4

1 8x

  (ii)  (a) (x − 2)4 + c

    (b) 1
4(x − 2)4 + c

    (c) 1
2(2x + 5)7 + c

    (d) 2(2x + 5)7 + c

    (e) –
( – )

1
2 1 3x

 + c

    (f) –
( – )

1
6 2 1 3x

 + c

    (g) ( – )1 8x  + c

    (h) – ( – )2 1 8x  + c

Exercise 6F  (Page 205)

  1 (i) 1
5(x + 5)5 + c

 (ii) 1
9(x + 7)9 + c

 (iii) –
( – )

1
5 2 5x

 + c

 (iv) 2
3(x − 4)

3
2  + c

 (v) 1
12(3x − 1)4 + c

 (vi) 1
35(5x − 2)7

 (vii) 1
4(2x − 4)6 + c

 (viii) 1
6(4x − 2)

3
2 + c

 (ix) 4
8 – x  + c

 (x) 3 2 1x –  + c

  2 (i) 51
3

 (ii) 60

 (iii) 205

 (iv) 336

 (v) 51
3

 (vi) 52
3

  3 (i) 4

 (ii)  –4; the graph has rotational 
symmetry about (2, 0).

  4 (i) 5.2 square units

 (ii) 1.6 square units

 (iii) 6.8 square units

 (iv)  Because region B is below 
the x axis, so the integral for 
this part is negative.

  5 (i) 4 square units

 (ii) 2
2
3  square units

  6 (i) 3y + x = 29

   (ii) y = 4 3 2 1x − +

  7 (i) (8.5, 4.25)

   (ii) y = 16 − 4 6 2− x

Activity 6.4 (Page 206)

  (i)  (a) 
1
2

  (b) 2
3

  (c) 0.9

  (d) 0.99

  (e) 0.9999

  (ii)  1

●?	 (Page 207)
1
a

;

	

1
20 x

x
∞
∫ d

	

does not exist since 1
0 is

undefined.

Exercise 6G  (Page 208)

  1 2

  2 
1
2

  3 2

  4 – 1
4

  5 –1

  6 24

x

y

O

2

y = x3

x

y

2

O

–1

y = x – 1

x

y

2

1

O

y = x4

x

y

1

–1
–2

O
y = x – 23
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P1 ●?	 (Page 209)
  1 (i)  A cylinder

  (ii)  A sphere

  (iii) A torus

  2 
7
3
π

●		 (Page 211)
Follow the same procedure as that 
on page 209 but with the solid sliced 
into horizontal rather than vertical 
discs.

Exercise 6H (Page 212)

  1  For example: ball, top (as in 
top & whip), roll of sticky tape, 
pepper mill, bottle of wine/milk 
etc., tin of soup

  2 (i) 

 

	 	

	
104

3
π

 units3

  (ii) 

 

  

  
56

3
π

 units3

 (iii) 

	 	

	 	

56
15

π
 units3

 (iv) 

  8π units3

  3 (i)  (ii)  

 
 
 
 
 
 
 
 
 
 (iii) 12π units3

  4 (i)   

 

  7π units3

 (ii)  

  234π units3

 (iii)  

 

 
 
 
 
  18π units3

  5 (i) 

  (ii) 45.9 litres  

  6 (i)  

 
 
 
 
 
 
 
 

 (ii)  ∫12

0
π(y + 4) dy

 (iii) 3 litres

 (iv)  ∫10

0
π(y + 4) dy = 90π

  = 34 of 120π

  7 42π

  8 6

Chapter 7

●?	 (Page 219)
When looking at the gradient of a 
tangent to a curve it was considered 
as the limit of a chord as the 
width of the chord tended to zero. 
Similarly, the region between a 
curve and an axis was considered as 
the limit of a series of rectangles as 
the width of the rectangles tended 
to zero.

Exercise 7A (Page 221)

  1  (i)  Converse of Pythagoras’  
  theorem

 (ii) 8
17

15
17

8
15, ,

  3  (i)  5 cm

O 1 3 x

y
y = 2x

O 2 x

y

 y = x + 2 

2

O x

y y = x2 + 1

–1 1

1

O x

y

4

y = x

3

O x

y

4y = 3x

4

(4, 3)

O x

y

y = 3x

3

6

O x

y

3

y = x – 3

–3

6

O x

y
y = x2 – 2

4

–2

y

x

62.5

10O 25

10y = 10
(base)

O x

y

y = x2 – 412

–4

–2 2

R
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P1    4  (i)  8
9

3

  5  (i)  4d

  6  (i)  BX = 3 3

Activity 7.1 (Page 223)

●?	 (Page 227)
  1 The oscillations continue to the  
 left.

  2 y = sin θ:

 − reflect in θ = 90° to give the  
  curve for 90°  θ  180° 

 −  rotate the curve for   
0  θ  180° through 180°,  
centre (180°, 0) to give the 
curve for 180°  θ  360°.

 y = cos θ:

 −  translate 
− °





90
0

 and reflect 

   in y axis to give the curve for
0  θ  90° 

 −  rotate this through 180°, 
centre (90°, 0) to give the 
curve for 90°  θ  180°

 −  reflect the curve for 
0  θ  180° in θ = 180° 
to give the curve for  
180°  θ  360°.

Activity 7.2 (Page 228)

●?	 (Page 232)
The tangent graph repeats every 
180° so, to find more solutions, keep 
adding or subtracting 180°.

Exercise 7C  (Page 233)

  1 (i), (ii)

 (ii)  30°, 150°

  (iii)  30°, 150° (± multiples of 360°)

  (iv) −0.5

  2 (i), (ii) 

 

 

 

 

  (ii)  x = −53°, 53°, 307°, 413° 
  (to nearest 1°)

  (iii), (iv) 

 
 
 
 
 
 
 

 
 
  (iv) x = 53°, 127°, 413°   
  (to nearest 1°)

  (v)  For 0  x  90°, 
sin x = 0.8 and cos x = 0.6 
have the same root. 
For 90°  x  360°,
sin  x and cos x are never 
both positive.

  3 (Where relevant, answers are to  
 the nearest degree.)  

 (i) 45°, 225°  

 (ii) 60°, 300° 

 (iii)  240°, 300°  

 (iv)  135°, 315°  

 (v)  154°, 206°  

 (vi) 78°, 282°  

 (vii) 194°, 346°  

 (viii)  180°

  4 (i)  3
2

 
(ii) 

1

2
 (iii) 1   

 (iv) 1
2

 (v) – 1
2

 (vi)  0  

Only sin θ positive

Only tan θ positive

All positive

Only cos θ positive

θ

y

0

y = sin θ 
 

–180

θ

y

0

y = cos θ 
 

–270

–360

–90

y = cos θ

θ

y

0–90 90 180 270 360 450

1

–1

y = tan θ

θ

y

0–90 90 180 270 360 450

y = sin θ

θ

y

0–90 90 180 270 360 450

1

–1

x

sin x

9030 270

1

1
2

–1

150
180

360

x

cos x

–90
–53 53 307 413

1

–1

90 270180 360 450

0.6

x

sin x

–90
53 127 413

1

–1

90 270180 360 450

0.8
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P1  (vii) 1
2

 (viii) 3
2

  (ix) −1 

  5 (i)    −60° 

 (ii)   −155.9°  

 (iii)   54.0° 

  6 (i) 

 

  (ii) (a) False  

  (b) True 

  (c) False  

  (d) True

  7 (i)   α between 0° and 90°, 360° 
and 450°, 720° and 810°, 
etc. (and corresponding 
negative values).

  (ii) No: since tan α  =  sin
cos

α
α , all 

   must be positive or one  
positive and two negative.

  (iii)  No: sin α  = cos α ⇒ α = 45°, 
225°, etc. but tan α = ±1 for 
these values of α, and 

  sin α = cos α = 
1

2

  8 (i) 5.7°, 174.3° 

 (ii) 60°, 300° 

 (iii) 116.6°, 296.6° 

 (iv)  203.6°, 336.4° 

 (v) 0°, 90°, 270°, 360° 

 (vi)  90°, 270° 

 (vii) 0°, 180°, 360° 

 (viii)  54.7°, 125.3°, 234.7°, 305.3° 

 (ix) 60°, 300° 

 (x) 18.4°, 71.6°, 198.4°, 251.6°

  9 A: (38.2°, 0.786),   
 B: (141.8°, −0.786)

10 (ii)  x = 143.1° or x = 323.1°

11 (ii)  x = 26.6° or x = 206.6°

12 (ii)  θ = 71.6° or θ = 251.6°

13 θ = 90° or θ = 131.8°

Exercise 7D (Page 238)

  1 (i) 
π
4

 (ii) 
π
2

 (iii) 
2
3
π

  (iv) 
5
12
π

 (v) 5
3
π

 (vi) 0.4 rad  

 (vii) 5
2
π

 (viii) 3.65 rad  

 (ix) 5
6
π

 (x) π
25

  2 (i) 18°

  (ii)  108°  

 (iii) 114.6°  

 (iv) 80°  

 (v) 540°  

 (vi) 300°  

 (vii) 22.9°  

 (viii) 135°  

 (ix) 420° 

 (x) 77.1° 

  3 (i) 
1

2

 (ii) 3

 (iii) 3
2

 (iv) −1 

 (v) −1 

 (vi)  3
2

 (vii) 3

 (viii)  – 1

2

 (ix) 1
2

 

 (x) 1
2

  4 (i) 
π π
6

11
6

,

 (ii) π π
4

5
4

,

 (iii) π π
4

3
4

,

 (iv) 7
6

11
6

π π,

 (v) 3
4

5
4

π π,

 (vi) 
π π
3

4
3

,

  5 (i) 0.201 rads, 2.940 rads 

 (ii) −0.738 rads, 0.738 rads 

 (iii) −1.893 rads, 1.249 rads 

 (iv) −2.889 rads, −0.253 rads 

 (v) −1.982 rads, 1.982 rads 

 (vi) −0.464 rads,  2.678 rads

  6 0 rads, 0.730 rads, 2.412 rads,  
  rads

	●?	 (Page 241)
Draw a line from O to M, the mid-
point of AB. Then find the lengths 
of OM, AM and BM and use them to 
find the areas of the triangles OAM 
and OBM, and so that of OAB. 

In the same way,  
AB = AM + MB = 2AM.

Exercise 7E (Page 241)
  1 

r	(cm) θ (rad) s	(cm) A	(cm2)

5

4

5
4
 25

8


8 1 8 32

4
1
2 2 4

11
2


3


2

3
8


5
4
5 4 10

1.875 0.8 1.5 1.41

3.46
2
3


7.26 4

y

0

shaded areas are congruent

–90 180 360

1

–1

x

(180 – x)

y = sin x 

x 
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P1    2 (i) (a) 
20

3


 cm2 

  (c)  16.9 cm2 

 (ii)  19.7 cm2  

  3 (i) 1.98 mm2 

 (ii) 43.0 mm 

  5 (i) 140 yards 

 (ii) 5585 square yards  

  6 (ii) 43.3 cm

 (iii) 117 cm2 (3 s.f.)

  7 (i) 62.4 cm2

 (ii) 0.65

  8 (i) 4 3

 (ii) 48 3 − 24π

  9 (i) 1.8 radians

 (ii) 6.30 cm

 (iii) 9.00 cm2

10 (ii) 18 − 6 3 + 2π

Activity 7.3 (Page 245)

The transformation that maps 
the curve y = sin x on to the curve 

y = 2 + sin x is the translation 0
2







.

In general, the curve y = f(x) + s is 
obtained from y = f(x) by the 

translation 0
s







.

Activity 7.4 (Page 245)

The transformation that maps 
the curve y = sin x on to the 
curve y = sin (x − 45°) is the 

translation 45
0
°





.

In general, the curve y = f(x − t) is 
obtained from y = f(x) by the

translation t
0







.

Activity 7.5 (Page 246)

The transformation that maps the 
curve y = sin x on to the curve 
y = − sin x is a reflection in the x axis.

In general, the curve y = −f(x) is 
obtained from y = f(x) by a 
reflection in the x axis.

Activity 7.6 (Page 246)

For any value of x, the y co-ordinate 
of the point on the curve y = 2 sin x 
is exactly double that on the curve 
y = sin x.

This is the equivalent of the curve 
being stretched parallel to the y axis. 
Since the y co-ordinate is doubled, 
the transformation that maps the 
curve y = sin x on to the curve 
y = 2 sin x is called a stretch of scale 
factor 2 parallel to the y axis.

The equation y = 2 sin x could also 
be written as 

y
2

 = sin x, so dividing 
y by 2 gives a stretch of scale factor 2 
in the y direction.  

This can be generalised as the curve 
y = af(x), where a is greater than 0, 
is obtained from y = f(x) by a stretch 
of scale factor a parallel to the y axis.

Activity 7.7 (Page 247)

For any value of y, the x co-ordinate 
of the point on the curve y = sin 2x 
is exactly half that on the curve  
y = sin x.

This is the equivalent of the curve 
being compressed parallel to the 
x axis. Since the x co-ordinate is 
halved, the transformation that 
maps the curve y = sin x on to the 
curve y = sin 2x is called a stretch of 
scale factor 12 parallel to the x axis.

Dividing x by a gives a stretch of 
scale factor a in the x direction, just 
as dividing y by a gives a stretch of 
scale factor a in the y direction: 

y = f 
x
a( ) corresponds to a stretch of 

scale factor a parallel to the x axis. 
Similarly, the curve y = f(ax), where 
a is greater than 0, is obtained from 
y = f(x) by a stretch of scale factor 1a  
parallel to the x axis.

Exercise 7F (Page 251)

  1 (i) Translation 90
0
°




 

 (ii) One-way stretch parallel to  
  x axis of s.f. 1

3

 (iii)  One-way stretch parallel to
y axis of s.f. 1

2  

 (iv) One-way stretch parallel to  
  x axis of s.f. 2

 (v) Translation  0
2







 2 (i) Translation  − °





60
0

 (ii) One-way stretch parallel to  
  y axis of s.f. 13   

 (iii) Translation 0
1






 

 (iv) One-way stretch parallel to  
  x axis of s.f. 12

  3 (i)  (a) 

 
 

    (b)  y = sin x

  (ii)  (a) 

 
 

    (b) y = cos x

  (iii) (a) 

 
 
   
    (b) y = tan x 

x

y

1

–1

O
180 360

x

y

1

–1

O
90 270

x

y

O
180
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P1   (iv) (a)

 
 

 
    (b) y = sin x

 (v) (a)

 

 

    (b) y = −cos x

  4 (i) y = tan x + 4

  (ii) y = tan (x + 30°)

  (iii) y = tan (0.5x)

  5  (i) y = 4 sin x

 (ii) –2 3

 

 6  (i) a = 3, b = −4

 (ii) x = 0.361 or x = 2.78

 (iii)   

  7  (i) a = 4, b = 6

 (ii) x = 48.2 or x = 311.8

 (iii)   

  8  (i) a = 6, b = 2, c = 3

 (ii)  7
12



  9  (i) 2  f(x)  8

 (ii)   

  (iii)  No, it is a many-to-one 
function.

10  (i) x = 0.730 or x = 2.41 

  (ii)  

  (iii) k  1, k  7

  (iv)  32


  (v) 2.80

Chapter 8

●?	 (Page 254)
To find the distance between the 
vapour trails you need two pieces of 
information for each of them: either 
two points that it goes through, 
or else one point and its direction.       
All of these need to be in three 
dimensions. However, if you want 
to find the closest approach of the 
aircraft you also need to know, for 
each of them, the time at which it was 
at a given point on its trail and the 
speed at which it was travelling. (This 
answer assumes constant speeds and 
directions.)

		●		 (Page 261)
The vector a1i + a2j + a3k is shown 
in the diagram.

x

y

1

–1

O
180 360

x

y

1

–1

O
90 270

x450180 360

y

y = tanx + 4

270900

4

x150 330

y

240600

y = tan (x + 30)

y

0 x

y = tan (0.5x)

540360180

x

f(x)

O
–1

7 y = 3 – 4 cos 2x

ππ
4

π
2

3π
4

x

f(x)

O

10

–2
90° 180° 270° 360°

y = 4 – 6 cos x

x

f(x)

O

8

5

2

ππ
2

y = 5 – 3 sin 2x

x

f(x)

O

7

4

1

2πππ
2

3π
2

y = 4 – 3 sin x

O

P

Q

a3

a1

a2

z

y

x
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P1  Start with the vector OQ
→  

= a1i + a2j.

Length = a a1
2

2
2+  

Now look at the triangle OQP.

 OP2 = OQ2 + QP2

  = (a1  
2 + a2  

2) + a3  
2 

⇒  OP = a a a1
2

2
2

3
2+ +

Exercise 8A (Page 261)

  1  (i)  3i + 2j 

 (ii)  5i − 4j 

 (iii) 3i   

 (iv) −3i − j 

  2 For all question 2:   

  (i) 

 

  ( 13, 56.3°)   

 (ii)   

   

  ( 13,  −33.7°)
 (iii)

     

  (4 2, −135°)

  (iv)     

 
 

  ( 5, 116.6°)

 (v)   

  
 

 
  

  (5, −53.1°)

3  (i)  3.74 

  (ii)  4.47  

  (iii)  4.90

  (iv)  3.32 

  (v)  7  

  (vi)  2.24

4  (i)  2i − 2j 

 (ii)  2i 

 (iii)  −4j 

 (iv)  4j 

 (v)  5k

 (vi)  −i − 2j + 3k

 (vii)  i + 2j − 3k 

 (viii)  4i − 2j + 4k

 (ix)  2i − 2k

 (x)  −8i + 10j + k

5  (i)  A: 2i + 3j, C: −2i + j	

	 (ii)  A
→

B = −2i + j, C
→

B = 2i + 3j

 (iii)  (a)  A
→

B = O
→

C  

  (b)  C
→

B = O
→

A

 (iv) A parallelogram

Activity 8.1 (Page 266)

(i)  (a)  F 

  (b)  C 

  (c)  Q 

  (d)  T 

  (e)  S

(ii)  (a)  O
→

F

  (b)  O
→

E, C
→

F

  (c)  O
→

G, P
→

S, A
→

F

  (d)  B
→

D

  (e)  Q
→

S, P
→

T

Exercise 8B (Page 269)

1  (i) 
6
8






 

 (ii) 
1
1



  

 (iii) 
0
0







  (iv) 
8
1−





  

 (v)  –3j

2  (i)  2i + 3j + k 

 (ii)  i	–	k

 (iii)  j –	k

 (iv)  3i + 2j –	5k

 (v)  –6k

3  (i)  (a) b 

   (b) a + b 

   (c) –a + b

  (ii)  (a) 1
2(a + b) 

   (b) 1
2(–a + b)

  (iii)   PQRS is any parallelogram 

   and P
→
M = 12P

→
R, Q

→
M = 12Q

→
S

O

x

y

Qa2

a1

P

QO

a3

j

i
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P1 4  (i)  (a) i 

   (b) 2i 

   (c) i − j 

   (d) −i − 2j

 (ii)  | A→B | = | B→C | = 2         ,

  | A
→

D | = | C
→

D | = 5

5  (i)  −p + q, 12p − 12q, −1
2p, −1

2q

 (ii)   N
→

M = 12B
→

C, N
→

L = 12 A
→

C, 

    M
→

L  = 12A
→

B

  6  (i) 

2

13
3

13

















      
     

  (ii)  3
5i + 45j

  (iii) 

–

–

1

2
1

2

















 

  (iv)  5
13i – 12

13j	 

  7  (i) 

1

14
2

14
3

14























  (ii)  2
3i − 23j + 13k

  (iii)  3
5i	− 45k

  (iv) 

–

–

2

29
4

29
3

29























  (v)  5

38
i − 

3

38
j + 

2

38
k

  (vi) 
1
0
0













  8  11.74

  9  x = 4 or x = −2

10  (i)  1
7
	

2
3
6−













  (ii)  m = −2, n = 3, k = −8

		● 		 (Page 271)
The cosine rule 
Pythagoras’ theorem

		●		 (Page 273)

	
a
a

b
b

1

2

1

2













.       = a1b1 + a2b2

b

b

a

a

1

2

1

2













.

	

= b1a1 + b2a2

These are the same because ordinary 
multiplication is commutative.

		●		 (Page 274)
Consider the triangle OAB with angle 
AOB = θ, as shown in the diagram.

cos –θ = +
× ×

OA OB AB
OA OB

2 2 2

2  

OA2 = a1  
2 + a2  

2 + a3  
2

OB2 = b1  
2 + b 2  

2 + b 3  
2

AB2 = (b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2 

⇒
 

cos
( )

| ||

.
| || |

θ =
+ +

=

2

2
1 1 2 2 3 3a b a b a b

a b

a b
a b

|

Exercise 8C (Page 275)

  1  (i)  42.3°

 (ii)  90° 

 (iii) 18.4°

 (iv) 31.0°

 (v)  90° 

 (vi) 180°

  2  (i) 
3
1

1
3







−



,  

 (ii)  B
→

A . B
→

C = 0

 (iii) | A
→

B | = | B
→

C | =  10  

 (iv) (2, 5)

  3  (i)  P
→

Q = −4i + 2j; R
→

Q   = 4i + 8j

  (ii)  26.6° 

  (iii) 3i + 7j 

 (iv) 53.1°  

  4  (i)  29.0°  

 (ii)  76.2° 

 (iii) 162.0°

  5  (i)   O
→

Q
   
= 3i + 3j + 6k,

  P
→

Q
  

= −3i + j + 6k

  (ii)  53.0°

  6  (i)  −2

  (ii)  40°

 (iii)  A
→

B = i − 3j + (p − 2)k; 
p = 0.5 or p = 3.5

  7  (i)  −6, obtuse

 (ii)  

2
3

2
3

1
3

–



















  8  (i)  99°

 (ii)  1
7(2i − 6j + 3k)

 (iii) p = −7 or p = 5

  9  (ii)  q = 5 or q = − 3

10  (i)  P
→

A = − 6i − 8j − 6k, 

  P
→

N = 6i + 2j − 6k

 (ii)  99.1°

11  (i)  4i + 4j + 5k, 7.55 m

 (ii)  43.7° (or 0.763 radians)

12  (i)  P
→

R = 2i + 2j + 2k, 

  P
→

Q
 
= − 2i + 2j + 4k

 (ii)  61.9°

 (iii) 12.8 units

θ

O

ab

b – a = (b1 – a1)i +

(b2 – a2)j + (b3 – a3)k

AB



Achilles and the tortoise   94
addition
 of vectors   263–4
 see also sum; summation
algebraic expressions, manipulating   

1
angles
 between two vectors   271–2, 

273–5
 of elevation and depression   216
 measuring   235
 of a polygon   6–7
 positive and negative   220
 in three dimensions   274–5
arc of a circle, length   238
area
 below the x axis   193–6
 between a curve and the y axis   

202–3
 between two curves   197
 as the limit of a sum   182–5
 of a sector of a circle   238
 of a trapezium   10
 under a curve   179–82
arithmetic progressions   77–84
asymptotes   69, 228

bearings   216, 255
binomial coefficients
 notation   97
 relationships   101
 sum of terms   101
 symmetry   97, 101
 tables   96–7
binomial distribution   102
binomial expansions, of  

(1 + x)n   100–1
binomial expansions   95–104
binomial theorem   102–4
brackets, removing   1–2

calculus
 fundamental theorem   180
 importance of limits   126
 notation   129, 131
 see also differentiation; 

integration

Cartesian system   38
centroid of a triangle   59
chain rule   167–71
changing the subject of a formula   

10–11
Chinese triangle see Pascal’s triangle
chords, approaching the tangent   

126
Chu Shi-kie   96
circle
 arc   238
 equation   69
 properties   238–44
 sectors   239
circular measure   235–8
common difference   77
completing the square   21–4
complex numbers   27
constant, arbitrary   173
co-ordinates
 and distance between two points   

41–2
 and gradient of a line   39–40
 of the mid-point of a line   42–3
 plotting, sketching and drawing   

39
 of a point   258
 in two and three dimensions   38
cosine (cos)   217, 223
 graphs   226–7
cosine rule   240, 271
cubic polynomial, curve and 

stationary points   64–5
curves
 continuous and discontinuous   

69
 drawing   63
 of the form y = 1

xn    68–9

 gradient   123–6, 134–9
 normal to   140–1

d (δ), notation   129
degrees   235
depression, angle   216

Descartes, René   58
difference of two squares   16
differential equations   173–4
 general solution   174
 particular solution   174
differentiation
 of a composite function   167–8
 from first principles   126–7, 131
 and gradient of curves   134–9
 with respect to different variables   

169–70
 reversing   173
 using standard results   131–2
discriminant   27
displacement vector   260
distance between two points, 

calculating   41–2
division, by a negative number   34
domain
 of a function   108
 of a mapping   106
drawing
 co-ordinates   39
 curves   63
 a line, given its equation   47–9

elevation, angle   216
equations
 of a circle   69
 graphical solution   20–1
 linear   6, 13
 solving   7–8
 of a straight line   46–54
 of a tangent   140
 see also differential equations; 

quadratic equations; 
simultaneous equations

expansion of (1 + x)n   100–1

factorials   97
factorisation   2
 quadratic   13–17
Fermat, Pierre de   126
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P1 formula
 binomial coefficients   97–9
 changing the subject   10–11
 definition   10
 for momentum after an impulse   

11
 quadratic   25–7
 for speed of an oscillating point   

11
fractions   3–4
functions
 composite   112–13, 167
 domain   108
 graphical representation   108–10
 increasing and decreasing   150–3
 inverse   115–17
 notation   113
 as one-to-one mappings   108
 order   113–14
 range   108
 sums and differences   132–3
fundamental theorem of calculus   

180

Gauss, Carl Friederich   79
geometrical figures, vector 

representation   265–7
geometric progressions   84–94
 infinite   88–90
grade, for measuring angles   235
gradient
 at a maximum or minimum point   

146–50
 of a curve   123–6, 134–9
 fixed   46
 of a line   39–40
gradient function   127–9
 second derivative   155
graphical solution
 of equations   20–1, 229–33
 of simultaneous equations   31
graphs
 of a function   108
 of a function and its inverse    

117–18
 maximum and minimum points   

146
 of quadratic functions   22–5
 of trigonometrical functions   

226–35

heptagon   6

i (square root of –1)   27

identities

 how they differ from equations   

7, 223

 involving sin, cos and tan   223–6

image (output)   106, 109

inequalities   34–6

 linear and quadratic   35

input   106, 109

integrals

 definite   186–7

 improper   206–8

 indefinite   188

integral sign   185

integration   173–9

 notation   184–5

 of xn   175

intersection

 of a line and a curve   70–3

 of two straight lines   56–8

inverse function   115–20

Leibniz, Gottfried   131

length

 of an arc of a circle   238

 of a vector   260–1

limits

 of an integral   185

 importance in calculus   126

 of a series   76

lines

 drawing, given its equation   46–9

 equation   46–54

 gradient   39–40

 intersection   56–8

 mid-point   42–3

 parallel   40–1

 perpendicular   40–1

line segment   260

line of symmetry   22, 23, 62, 217

locus, of a circle   69

mappings

 definition   106

 mathematical   107–11

 one-to-one or one-to-many   106

maximum and minimum points   

146–50

 see also stationary points

maximum and minimum values, 

finding   160–6

median of a triangle   59

mid-point of a line   42–3

modulus of a vector   256

momentum after an impulse, 

formula   11

multiplication

 of algebraic expressions   3

 by a negative number   35

 of a vector by a scalar   262

negative number

 multiplying or dividing by   35

 square root   27, 108, 114

Newton, Sir Isaac   131

normal to a curve   140–1

object (input)   106, 109

parabola

 curve of a quadratic function   22

 vertex and line of symmetry   22, 

23

parallel lines   40–1

Pascal, Blaise   96

Pascal’s triangle (Chinese triangle)   

95, 98, 101

perfect square   16

periodic function   226

perpendicular lines   40–1

plotting co-ordinates   39

points, three-dimensional  

co-ordinates   258

points of inflection   153–4

polygons, sum of angles   6

polynomials

 behaviour for large x (positive 

and negative)   65

 curves   63

 dominant term   65

 intersections with the x and y axes   

65–7

position–time graph, velocity and 

acceleration   161

position vectors   259–60

principal values

 of graphs of trigonometrical 

functions   229–30

 in a restricted domain   117

Pythagoras’ theorem, alternative 

proof   44



In
d

e
x

312

P1  quadratic equations   12–18

 completing the square   21–2

 graphical solution   20–1, 229–33

 that cannot be factorised   20–2

quadratic factorisation   13–17

quadratic formula   25–7

quadratic inequalities   35

quadratic polynomial, curve and 

stationary point   64–5
quartic equation, rewriting as a 

quadratic   17–18
quartic polynomial, curve and 

stationary points   64–5

radians   235, 237
range, of a mapping   106
real numbers   27, 107, 108, 115
reflections, of trigonometrical 

functions   246
reverse chain rule   203–6
roots
 of a quadratic equation   17
 real   26, 27, 28
rotational solids   209–11

Sawyer, W.W.   138
scalar, definition   254
scalar product (dot product)   271–4
second derivative   154–8
sectors of a circle, properties   

239–41
selections   102
sequences
 definition and notation   76
 infinite   76
series
 convergent   88, 89
 definition   76
 divergent   89
 infinite   76
simplification   1
simultaneous equations   29–33
 graphical solution   31
 linear   30–1
 non-linear   32
 substitution   31
sine rule   240
sine (sin)   217, 223
 graphs   226–7

sketching co-ordinates   39

snowflakes   94

speed of an oscillating point, 

formula   11

square

 completing   21–4

 perfect   16

square root

 of –1   27

 of a negative number   27

stationary points   63–4

 using the second derivative    

154–8

 see also maximum and minimum 

points

straight line see line

stretches, one-way, of 

trigonometrical functions   

246–7

substitution, in simultaneous 

equations   31, 32

subtraction, of vectors   264–5

sum

 of binomial coefficients   102

 of a sequence   76

 of the terms of an arithmetic 

progression   79–81

 of the terms of a geometric 

progression   86–90

summation

 of a series   76

 symbol   102

symmetry, of binomial coefficients   

101

tangent

 equation   140

 to a curve   123, 126, 140

tangent (tan)   217, 223

 graph   228

terms

 collecting   1

 like and unlike   1

 of a sequence   76

translations, of trigonometrical 

functions   244–5

trapezium, area   10

triangle

 properties   59

 see also Pascal’s triangle

trigonometrical functions   217–19

 for angles of any size   222

 inverse   229

 transformations   244–52

turning points of a graph   63

 see also stationary points

unit vectors   255, 258, 267–8

variables   6

vector product   273

vectors

 adding   263–4

 angle between   271–2, 273–5

 calculations   262–70

 components   255

 definition   254

 equal   259

 length   260–1

 magnitude–direction (polar) form   

254–7

 modulus   256

 multiplying by a scalar   262

 negative of   262–3

 notation   254–6

 perpendicular   272

 in representation of geometrical 

figures   265–7

 scalar product (dot product)   

271–4

 subtracting   264–5

 in three dimensions   258–62, 

274–5

 in two dimensions   254–7

 see also unit vector

vertex, of a parabola   22, 23

volume

 finding by integration   208–14

 of rotation   209

Wallis’s rule   129, 130

Yang Hui   96
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